The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
Researchers isolated a fungal pathogen from a naturally infected Rumex crispus leaf in Japan and identified it as Teratoramularia rumicicola using morphological traits and phylogenetic analysis of ITS and LSU rDNA sequences. Host range tests showed the isolate (TR4) caused disease and reduced biomass in three Rumex species but was harmless to five tested forage crops, indicating its potential as a selective bioherbicide for pasture systems.
Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.
The study identifies a novel C-terminal FR motif in Lotus japonicus NODULE INCEPTION (NIN) that expands DNA‑binding specificity by stabilizing the RWP‑RK dimer, and shows that loss of this motif impairs nodulation and nitrogen fixation. Comparative analysis reveals that Arabidopsis NLP2 also possesses a NIN‑type FR, and phylogenetic data suggest the motif originated in early gymnosperms, indicating it predates the evolution of root nodule symbiosis.
The study integrated genetic architecture derived from maize GWAS into phenotypic simulations of hybrid populations, using ≥200 top GWAS hits and adjusting marker effect sizes, which increased the correlation between simulated and empirical trait data across environments (r = 0.397–0.915). These informed simulations produced realistic trait distributions and genomic prediction results that closely matched empirical observations, demonstrating improved utility for digital breeding programs.
The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.
Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.
Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.
The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.
The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.
The study compared physiological, ion‑balance, and metabolic responses of two maize inbred lines—salt‑sensitive C68 and salt‑tolerant NC326—under salinity stress. Untargeted metabolomics identified 56 metabolites and, together with genetic analysis, linked 10 candidate genes to key protective metabolites, revealing constitutive and inducible mechanisms of salt tolerance.
The study models maize flowering time plasticity using a physiological reaction norm derived from multi-environment trial data, revealing genotype-specific differences in temperature-driven development and photoperiod perception. It introduces an envirotyping metric that shows genotypes can experience markedly different photoperiods even within the same environment, and demonstrates distinct adaptive strategies between tropical and temperate germplasm.