The study investigates the role of the SNF1-related kinase 1 (SnRK1) in conferring quantitative resistance to clubroot disease caused by Plasmodiophora brassicae in Arabidopsis thaliana. Increased nuclear SnRK1 activity suppresses disease development by down‑regulating sucrose transporter and cell wall invertase expression and activity, thereby reducing sink strength, while the pathogen effector PBZF1 interferes with SnRK1 nuclear translocation.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study demonstrates that trehalose‑6‑phosphate (T6P), a sucrose‑derived metabolite, acts as the central signal linking carbon availability to Target of Rapamycin (TOR) activation in plants. Using Arabidopsis and Brassica napus, the authors show that T6P is necessary for sucrose‑induced TOR activity and that it counteracts SnRK1‑mediated inhibition of TOR, establishing a sucrose‑T6P‑SnRK1‑TOR signaling axis that promotes cell growth.
The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
The study integrated 16 Arabidopsis thaliana whole‑genome bisulfite sequencing datasets from 13 stress experiments using a unified bioinformatic pipeline to map common and stress‑specific DNA methylation changes. Differentially methylated regions varied by stress type and methylation context, with CG DMRs enriched in gene bodies and CHG/CHH DMRs in transposable elements, some of which overlapped loci prone to stable epimutations. Gene ontology and TE enrichment analyses highlighted shared stress pathways and suggest environmental stress can generate heritable epigenetic variation.
High-quality PacBio HiFi draft genome assemblies were generated for three Bouteloua species (B. curtipendula, B. gracilis, B. eriopoda) with >98.5% BUSCO completeness. Gene prediction with Helixer produced inflated gene counts likely reflecting polyploidy and fragmented predictions, and panEDTA identified 25–40% transposable-element content dominated by LTR retrotransposons. These assemblies provide foundational references for comparative genomics within PACMAD grasses.
The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study used CRISPR/Cas9 to generate rice snrk1 mutants and performed integrated phenotypic, transcriptomic, proteomic, and phosphoproteomic analyses under normal and starvation conditions, revealing SnRK1’s dual role in promoting growth and mediating stress responses. Findings indicate sub-functionalization of SnRK1 subunits and identify novel phosphorylation targets linked to membrane trafficking, ethylene signaling, and ion transport.