The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The study tests whether the circadian clock component ELF3 shapes developmental trait heterogeneity, proposing that faster‑developing populations are more heterogeneous early but less so at maturity, whereas slower growers show the opposite pattern. Experiments with Arabidopsis elf3 and barley Hvelf3 mutants confirmed these predictions, showing ELF3 influences hypocotyl and bolting variability via maturation rate, and that smaller barley plants exhibit increased osmotic stress resilience, suggesting ELF3‑driven heterogeneity serves as a bet‑hedging strategy.
The study investigated unexpected leaf spot symptoms in Psa3‑resistant kiwifruit (Actinidia) germplasm, finding that Psa3 was detectable by qPCR and metabarcoding despite poor culturing. Metabarcoding revealed distinct bacterial community shifts in lesions versus healthy tissue, and whole‑genome sequencing identified diverse Pseudomonas spp. that, while not individually more pathogenic, could enhance Psa3 growth, suggesting pathogenic consortia on resistant hosts.