KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs
Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.
The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study used a computer‑vision phenotyping pipeline (EarVision.v2) based on Faster R-CNN to map Ds‑GFP mutant kernels on maize ears and a statistical framework (EarScape) to assess spatial patterns of allele transmission from the apex to the base. They found that alleles causing pollen‑specific transmission defects often show significant spatial biases, whereas Mendelian alleles do not, indicating that reduced pollen fitness can shape the spatial distribution of progeny genotypes in Zea mays.
The study investigates how the pleiotropic maize genes GRASSY TILLERS1 (GT1) and RAMOSA3 (RA3) are differentially regulated to suppress axillary meristems and floral organs, using a newly developed high-throughput quantitative phenotyping method for grass flowers. Distinct environmental mechanisms were found to control each suppression process, and upstream regulatory pathways of GT1 and RA3 have diverged, illustrating how ancient developmental genes can be redeployed to increase genetic pleiotropy during evolution.
Non-catalytic and catalytic TREHALOSE-6-PHOSPHATE SYNTHASES interact with RAMOSA3 to control maize development.
Authors: Tran, T., Claeys, H., Abraham Juarez, M. J., Vi, L. S., Xu, X., Michalski, K., Chou, T. H., Iohannes, S. D., Boumpas, P., Williams, Z., Sheppard, S., Griffiths, C., Paul, M., Furukawa, H., Jackson, D.
The study reveals that the maize catalytic trehalose-6-phosphate phosphatase RA3 interacts with the non‑catalytic TPS ZmTPS1, and together with the catalytic TPS ZmTPS14 they form a protein complex that enhances enzymatic activity. Genetic analyses show that mutations in ZmTPS1 and its paralog ZmTPS12 exacerbate ra3 branching phenotypes, while loss of the catalytic TPSs ZmTPS11 and ZmTPS14 causes embryonic lethality, indicating essential and regulatory roles for both catalytic and non‑catalytic TPS/TPP proteins in plant development.
The study shows that the membrane lipids PI4P, PI(4,5)P2, and phosphatidylserine have distinct spatial and temporal dynamics during lateral root primordium formation in Arabidopsis thaliana, with PI4P acting as a stable basal lipid, PI(4,5)P2 serving as a negative regulator of initiation, and phosphatidylserine increasing after founder cell activation. Using live-cell biosensors, genetic mutants, and an inducible PI(4,5)P2 depletion system, the authors demonstrate that reducing PI(4,5)P2 enhances lateral root initiation and development.
Using CRISPR‑Cas9‑generated Zmcry mutants, the study shows that maize cryptochromes redundantly mediate blue‑light signaling, suppress mesocotyl elongation, and enhance UV‑B stress tolerance by upregulating genes for phenylpropanoid, flavonoid, and fatty‑acid pathways. Blue light also promotes epidermal wax accumulation, and ZmCRY1 directly interacts with GLOSSY2 in a light‑dependent manner to drive C32 aldehyde synthesis, linking cryptochrome activity to wax biosynthesis and UV‑B resistance.
Metagenomic pool sequencing of infected maize leaves was used to monitor the population dynamics of the fungal pathogen Exserohilum turcicum, revealing a recent shift from local clonal lineages to tropical Kenyan lineages in a Swiss agricultural region. The novel leaf‑pooling approach enabled cost‑effective, large‑scale sampling, while phyllobiome analyses showed consistent microbial communities across maize varieties.
Gene regulatory network analysis of somatic embryogenesis identifies morphogenic genes that increase maize transformation frequency
Authors: Renema, J., Luckicheva, S., Verwaerde, I., Aesaert, S., Coussens, G., De Block, J., Grones, C., Eekhout, T., De Rybel, B., Brew-Appiah, R. A. T., Bagley, C. A., Hoengenaert, L., Vandepoele, K., Pauwels, L.
The study co‑expressed BABY BOOM and WUSCHEL2 in maize embryos and used single‑cell transcriptomics to infer cell‑type‑specific gene regulatory networks underlying induced somatic embryogenesis. By prioritizing and functionally validating four novel transcription factors, the authors enhanced maize transformation efficiency and produced fertile transgenic plants.
The study engineers Type‑B response regulators to alter their transcriptional activity and cytokinin sensitivity, enabling precise modulation of cytokinin‑dependent traits. Using tissue‑specific promoters, the synthetic transcription factors were deployed in Arabidopsis thaliana to reliably increase or decrease lateral root numbers, demonstrating a modular platform for controlling developmental phenotypes.