Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
The study demonstrates that Magnesium Iron-layered double hydroxide (MgFe-LDH) nanocarriers effectively protect and deliver fungal effector dsRNA to pea leaves, enabling sustained gene silencing of Erysiphe pisi and providing enhanced local and systemic powdery mildew resistance for up to 15 days. The LDH formulation exhibits strong leaf adherence, biocompatibility, RNase protection, and rapid uptake into plant cells and fungal haustoria, outperforming dsRNA or LDH alone.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
AGO5 restricts virus vertical transmission in plant gametophytes
Authors: Hoffmann, G., Sadhu, S. P., Bradamante, G., Diez Marulanda, J. C., Proschwitz, A., Wegscheider, T., Turhan, I., Bente, H., Gutzat, R., Incarbone, M.
The study demonstrates that the RNAi factor AGO5, expressed in Arabidopsis thaliana shoot apical meristem stem cells and germline, markedly reduces vertical transmission of Turnip yellow mosaic virus (TYMV). Using controlled pollination with ago5 knock‑out and cell type‑specific rescue lines, the authors show that AGO5 functions in pollen and sperm cells to block virus passage, and that targeted activation of antiviral RNAi in sperm further lowers transmission rates.
Four barley genotypes were examined under simultaneous Fusarium culmorum infection and drought, revealing genotype-dependent Fusarium Head Blight severity and largely additive transcriptomic responses dominated by drought. Co‑expression and hormone profiling linked ABA and auxin to stress‑specific gene modules, and a multiple linear regression model accurately predicted combined‑stress gene expression from single‑stress data, suggesting modular regulation.
The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study characterizes insertion mutants of the Arabidopsis thaliana CKL12 kinase, revealing its role in hypocotyl and primary root growth and indicating that the 3' end of its transcript is crucial for function. Evidence suggests CKL12 is transcriptionally regulated by brassinosteroid signaling, as its promoter binds BR-related transcription factors and their RNAi-mediated knock‑down reduces CKL12 expression, placing CKL12 downstream of BR signaling in seedling development.