Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.
The study reanalyzed 1,107 public grapevine RNA‑seq datasets to build condition‑specific gene expression atlases and a whole‑genome co‑expression network associated with drought stress, and deployed these resources via a web‑based Hydric Stress Atlas App. Network topology analysis identified candidate hub genes that could serve as molecular markers or targets for gene editing to improve drought tolerance in Vitis vinifera.
The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.
Priming of retrograde signaling in wheat across multiple natural environments reveal how responses to dynamic stimuli can be integrated to alter yield, yield stability and water productivity
Authors: Bowerman, A. F., Moore, M., Yadav, A., Zhang, J., Mortimer, M. D., Plskova, Z., Tee, E. E., Au, E. K., Collinge, D. P., Estavillo, G. M., Howitt, C. A., Chan, K. X., Rebetzke, G. J., Pogson, B. J.
The study generated wheat (Triticum aestivum) mutants with targeted deletions in the SAL gene family (TaSAL1 and TaSAL2) to assess the impact of chloroplast-to-nucleus retrograde signaling on field performance. Across 15 diverse Australian field trials, TaSAL2 deletions conferred 4–8% higher yields and improved water productivity by maintaining photosynthetic efficiency and dynamic stomatal control under drought, whereas TaSAL1 deletions reduced yields. These results demonstrate that locus‑specific retrograde signaling modifications can simultaneously enhance yield and stress resilience in a major crop.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The study investigates the Arabidopsis ribosomal protein RPS6A and its role in auxin‑related root growth, revealing that rps6a mutants display shortened primary roots, fewer lateral roots, and defective vasculature that are not rescued by exogenous auxin. Cell biological observations and global transcriptome profiling show weakened auxin signaling and reduced levels of PIN auxin transporters in the mutant, indicating a non‑canonical function of the ribosomal subunit in auxin pathways.
Robustness of high-throughput prediction of leaf ecophysiological traits using near infra-red spectroscopy and poro-fluorometry
Authors: Coindre, E., Boulord, R., Chir, L., Freitas, V., Ryckewaert, M., Laisne, T., Bouckenooghe, V., Lis, M., Cabrera-Bosquet, L., Doligez, A., Simonneau, T., Pallas, B., Coupel-Ledru, A., Segura, V.
The study evaluated high‑throughput spectroscopy and poro‑fluorometry to predict leaf morphological and ecophysiological traits in a grapevine diversity panel under well‑watered and drought conditions. Spectroscopy reliably estimated leaf mass per area and water content, while poro‑fluorometry accurately predicted net CO2 assimilation, and the derived predicted traits showed substantial broad‑sense heritability. These results demonstrate that non‑destructive, rapid phenotyping tools can support genetic analyses of drought‑related traits in grapevine.