The study generated a single‑cell transcriptomic atlas of tomato adventitious root development, revealing that vascular tissues retain high developmental potential and that the DOF11‑LEA3 regulatory axis drives this process. Cross‑species integration shows tomato AR‑initiating cells share transcriptional programs with woody dicots but not Arabidopsis, suggesting AR competence is an ancestral vascular identity module. These results highlight tomato as a more representative model for AR biology and provide targets for improving vegetative propagation.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study used chemically induced effector-triggered immunity combined with single-cell transcriptomics to map immune responses across all leaf cell types in Arabidopsis, revealing that while a core defense program is universally activated, individual cell types deploy distinct transcriptional modules. Functional assays showed that epidermis‑specific transcriptional regulators are essential for preventing pathogen penetration, indicating a spatial division of immune functions within the leaf.
Gene regulatory network analysis of somatic embryogenesis identifies morphogenic genes that increase maize transformation frequency
Authors: Renema, J., Luckicheva, S., Verwaerde, I., Aesaert, S., Coussens, G., De Block, J., Grones, C., Eekhout, T., De Rybel, B., Brew-Appiah, R. A. T., Bagley, C. A., Hoengenaert, L., Vandepoele, K., Pauwels, L.
The study co‑expressed BABY BOOM and WUSCHEL2 in maize embryos and used single‑cell transcriptomics to infer cell‑type‑specific gene regulatory networks underlying induced somatic embryogenesis. By prioritizing and functionally validating four novel transcription factors, the authors enhanced maize transformation efficiency and produced fertile transgenic plants.