Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.
The study examined five geographically diverse accessions of the hummingbird‑pollinated monkeyflower Mimulus cardinalis, revealing extensive variation in floral morphology, nectar composition, pigment biochemistry, and scent that influence pollinator perception. Integrating metabolomics, morphology, transcriptomics, and whole‑genome sequencing, the authors identified genetic differences underlying the independent evolution of yellow flowers at range edges. These findings highlight how climate, pollinator interactions, and multi‑trait diversification drive early stages of floral divergence.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
A Multi-lensed Comparative Analysis of Select Secondary Metabolites Produced by Kale, Brassica oleracea, in Simulated Microgravity Versus Gravity Conditions
Authors: Osano, A., Dill, R., Li, Y., Yan, J., Ray, S., Ude, G., Iro, A.
The study examined how simulated microgravity, using a 2-D clinostat, influences the metabolomic profile of the Starbor Kale (F1) cultivar, focusing on flavonoid content. Proton NMR revealed increased aromatic peaks, and HPTLC showed enhanced banding in medium- and high-polarity extracts, indicating elevated secondary metabolite production under microgravity conditions. These findings suggest kale is a promising candidate for space-based cultivation to mitigate astronaut health risks.
Adaptive Strategies of the invasive aquatic plant, Ludwigia grandiflora subps. hexapetala: Contrasting Plasticity Between Aquatic and Terrestrial Morphotypes.
Authors: Genitoni, J., Vassaux, D., RENAULT, D., Maury, S., BARLOY, D. H.
The study compared aquatic and terrestrial morphotypes of the invasive plant Ludwigia grandiflora subsp. hexapetala under aquatic and terrestrial conditions, measuring morphological traits, metabolomic and phytohormonal profiles at 14 and 28 days. Results showed the terrestrial morphotype has higher baseline morphological values, while the aquatic morphotype exhibits greater phenotypic plasticity, with plasticity indices changing over time, indicating pre‑adaptation and potential local adaptation.
Stress-dependent responses of grapevine wood and fungal pathogen activity under esca and drought
Authors: Chambard, M., Cantu, D., Bortolami, G., Dell'Acqua, N., Ferrer, N., Gambetta, G., Garcia, J., Gastou, P., Massonnet, M., Moretti, S., Rochepeau, A., Petriacq, P., Foulongne-Oriol, M., Delmas, C. E. L.
The study used wood metatranscriptomics, metabolomics, and metabarcoding to compare grapevine (Vitis vinifera) responses to drought and esca leaf symptom expression, revealing distinct but overlapping transcriptomic and metabolic signatures, including activation of phenylpropanoid and stilbenoid pathways. Drought reduced esca symptom expression, associated with decreased abundance of the wood‑decay fungus Fomitiporia mediterranea and altered fungal virulence factor expression, while increasing the relative abundance and anti‑oxidative gene expression of Phaeomoniella chlamydospora.
The study investigated whether clonal offspring of Festuca rubra inheriting drought or methyl jasmonate (MeJA) exposure exhibit transgenerational stress memories that enhance tolerance to subsequent drought. Using a factorial experiment, untargeted LC‑MS metabolomics combined with morpho‑physiological assessments revealed that combined drought and MeJA memories generate novel metabolic and physiological responses, improving water conservation and photosynthetic performance. These findings highlight a layered, interactive memory system that can be leveraged to prime drought resilience across generations.
The study conducted tissue-specific metabolomic profiling of leaf, calyx, and fruit surfaces across 29 Physalis species, revealing extensive acylsugar diversity with up to 323 unique structures, many accumulated on fruit surfaces. Hierarchical clustering and phylogenetic analyses showed that acylsugar profiles do not align with taxonomic relationships, and functional assays of ASAT1 enzymes from three species demonstrated broad substrate specificity that likely drives structural variation. These findings highlight fruit-localized acylsugars as potential targets for engineering crop resilience.
The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.