The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.