The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.
The study compares the iron-poor oceanic diatom Thalassiosira oceanica with the iron-rich coastal species T. pseudonana to uncover how diatoms adapt to low-iron conditions. Using photo‑physiological measurements, proteomic profiling, and focused ion beam scanning electron microscopy, the researchers show that each species remodels chloroplast compartments and exhibits distinct mitochondrial architectures to maintain chloroplast‑mitochondrial coupling under iron limitation.
CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The study used comparative transcriptomics of dorsal and ventral petals across development, alongside expression profiling in floral symmetry mutants, to identify genes linked to dorsal (AmCYC-dependent) and ventral (AmDIV-dependent) identities in Antirrhinum majus. In situ hybridisation validated axis‑specific and boundary‑localized expression patterns, revealing that a conserved NGATHA‑LIKE1‑BRASSINAZOLE‑RESISTANT1‑miR164 module has been co‑opted to regulate AmDIV targets and shape the corolla. These findings delineate regulatory modules coordinating dorsoventral and proximal‑distal patterning in zygomorphic flowers.
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study sequenced genomes of ericoid mycorrhiza‑forming liverworts and experimentally reconstituted the symbiosis, revealing a nutrient‑regulated state that supports intracellular colonization. Comparative transcriptomics identified an ancestral gene module governing intracellular symbiosis, and functional validation in Marchantia paleacea through genetic manipulation, phylogenetics, and transactivation assays confirmed its essential role. The findings suggest plants have retained and independently recruited this ancestral module for diverse intracellular symbioses.
The first nested association mapping (NAM) population for outbreeding Italian ryegrass reveals candidate genes for seed shattering and related traits
Authors: Kiesbauer, J., Grieder, C., Sindelar, M., Schlatter, L. H., Ariza-Suarez, D., Yates, S., Stoffel-Studer, I., Copetti, D., Studer, B., Koelliker, R.
The study generated the first nested association mapping (NAM) population in the outcrossing forage grass Italian ryegrass (Lolium multiflorum) to investigate seed shattering and related traits, using ddRAD sequencing of 708 F2 individuals combined with whole-genome sequencing of 24 founders to obtain over 3 million SNPs for population structure, parentage, and GWAS analyses. Seven QTL were identified for seed shattering and other agronomic traits, leading to the discovery of candidate genes, including one associated with ripening pathways that explained 10% of phenotypic variance, demonstrating the utility of NAM for dissecting complex traits in outcrossing grasses.