The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.
The study demonstrates that the GIGANTEA (GI) protein is a core component of the wheat circadian clock, required for robust oscillations in chlorophyll fluorescence and clock gene expression. Loss of functional GI leads to delayed heading under both long and short photoperiods, indicating a photoperiod‑1‑dependent pathway distinct from Arabidopsis. These findings provide insight into photoperiodic regulation of flowering in wheat, informing breeding strategies for high‑yield cultivars.