The study used phylogeny‑based analyses of 36 legume genomes and a newly created multiparent advanced generation intercross (MAGIC) population of common bean to predict and characterize genome‑wide deleterious mutations. Machine‑learning integration of conservation and protein features identified thousands of potentially deleterious sites, whose variation correlated negatively with flowering time, maturity, and yield, highlighting the impact of genetic load on breeding performance.
The authors introduce S²-PepAnalyst, a web-based tool that leverages plant-specific datasets and advanced machine learning to predict small signaling peptides (SSPs) with 99.5% accuracy and minimal false negatives. By integrating protein language models, geometric‑topological analysis, and reinforcement learning, the tool surpasses existing predictors such as SignalP 6.0 in classifying peptide families like CLE and RALF.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
High Density Phenotypic Map of Natural Variation for Intermediate Phenotypes Associated with Stalk Lodging Resistance in Maize
Authors: Kunduru, B., Bokros, N. T., Tabaracci, K., Kumar, R., Brar, M. S., Stubbs, C. J., Oduntan, Y., DeKold, J., Bishop, R. H., Woomer, J., Verges, V. L., McDonald, A., McMahan, C. S., DeBolt, S., Robertson, D. J., Sekhon, R.
The study evaluated 11 intermediate phenotypes linked to stalk lodging resistance in a diverse panel of 566 maize (Zea mays L.) inbred lines across four environments, preserving individual stalk identity to capture plant-level variation. This high-density phenotypic dataset enabled statistical genomics, predictive modeling, and machine learning to uncover genetic factors underlying lodging resistance, offering insights applicable to other grass species.
The Global Wheat Full Semantic Organ Segmentation (GWFSS) dataset
Authors: Wang, Z., Zenkl, R., Greche, L., De Solan, B., Bernigaud Samatan, L., Ouahid, S., Visioni, A., Robles-Zazueta, C. A., Pinto, F., Perez-Olivera, I., Reynolds, M. P., Zhu, C., Liu, S., D'argaignon, M.-P., Lopez-Lozano, R., Weiss, M., Marzougui, A., Roth, L., Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B., Fernandez, J., Chapman, S., Najafian, K., Stavness, I., Wang, H., Guo, W., Virlet, N., Hawkesford, M., Chen, Z., David, E., Gillet, J., Irfan, K., Comar, A., Hund, A.
The Global Wheat Dataset Consortium released a comprehensive semantic segmentation dataset (GWFSS) of wheat organs across developmental stages, comprising 1,096 fully annotated images and 52,078 unannotated images from 11 institutions. Models based on DeepLabV3Plus and Segformer were trained, with Segformer achieving ≈90% mIoU for leaves and spikes but lower precision (54%) for stems, while also enabling weed exclusion and discrimination of necrotic, senescent, and residue tissues.
The study utilizes explainable artificial intelligence (XAI) combined with machine learning to assess how inter‑annual weather variability influences oilseed sunflower yields across the United States from 1976 to 2022. Key climate predictors, especially summer maximum temperature and total precipitation, were identified, and predictive models were projected under various Shared Socioeconomic Pathways to 2080, revealing region‑specific yield declines.
RNA‑seq of 328 wheat lines using a pan‑genome reference uncovered over 20,000 additional transcripts beyond the Chinese Spring genome and enabled construction of a pan‑gene eQTL regulatory atlas. Multi‑omics integration identified 231 high‑confidence candidate genes influencing 34 agronomic traits and powdery mildew resistance, with functional validation showing 80% of candidates affecting trait phenotypes via an EMS mutant library.
This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.
The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.