The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.
The study benchmarked over 20 web‑based gRNA on‑target efficiency prediction tools against an experimental plant CRISPR editing dataset, finding several machine‑learning based tools whose scores strongly correlated with observed InDel frequencies. Additionally, the performance of popular platforms such as CRISPOR and CRISPR‑P was assessed, offering guidance for improved gRNA design in plant genome editing.
The study evaluates the use of single-cell RNA sequencing (scRNA-seq) data to predict plant metabolic pathway genes (MPGs) in Arabidopsis thaliana, comparing five multi-label machine‑learning algorithms against traditional bulk RNA‑seq approaches. scRNA‑seq generated co‑expression networks that, while different, yielded significantly higher MPG classification accuracy, especially when data were split by genetic background or tissue type, and deep learning outperformed classical methods. The authors conclude that scRNA‑seq offers superior predictive power and should be incorporated into future MPG discovery pipelines.
Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study integrated weekly morphophysiological measurements with high-density genotyping-by-sequencing data and a machine‑learning pipeline to dissect flowering time variation in diverse Cannabis sativa landraces. By applying mutual information, recursive feature elimination, random forest, and support vector machine classifiers to over 234,000 combined genetic, phenotypic, and environmental features, the authors identified 53 key markers that classify early, medium, and late flowering types with 96.6% accuracy. Notable loci, including CsFT3 and CsCFL1, were highlighted as promising targets for breeding and smart‑crop strategies.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
The study used extensive gravimetric load‑cell and ambient sensor data collected over seven years from hundreds of greenhouse-grown crops to train machine‑learning models for predicting daily whole‑plant transpiration. Random Forest and XGBoost achieved the highest accuracy (R² up to 0.89), with ambient temperature identified as the dominant driver. These results highlight the promise of ML‑based tools for precise agricultural water management.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.