The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The authors integrate phenotypic plasticity concepts with factor analytic linear mixed models to evaluate yield stability in cereals, defining adaptive plasticity as consistent superior performance across environments without trade‑offs. Using wheat and oat multi‑environment trial data, they demonstrate that adaptive plasticity positively correlates with overall performance estimated by factor analytic models, whereas maladaptive plasticity shows negative correlation. The study argues that biologically grounded statistical approaches can clarify the trade‑offs often implied in yield‑stability advocacy.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study evaluated drought tolerance and yield stability of eleven Andean amaranth genotypes (A. caudatus and A. mantegazzianus) across four agroecological zones in Northwest Argentina under irrigated and drought‑stressed conditions. Using linear mixed models and AMMI analysis, significant genotype and genotype‑by‑environment effects were detected, identifying several breeding lines with high yield and stability as well as a highly stable but low‑yielding landrace. The results highlight both broad and specific adaptation among amaranth genotypes for drought‑prone environments.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.