Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.
Four barley genotypes were examined under simultaneous Fusarium culmorum infection and drought, revealing genotype-dependent Fusarium Head Blight severity and largely additive transcriptomic responses dominated by drought. Co‑expression and hormone profiling linked ABA and auxin to stress‑specific gene modules, and a multiple linear regression model accurately predicted combined‑stress gene expression from single‑stress data, suggesting modular regulation.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
The study genotyped 1,013 hard red spring wheat lines using SNP arrays and targeted KASP markers to track changes in genetic diversity and the distribution of dwarfing Rht alleles over a century of North American breeding. It found shifts from Rht‑D1b to Rht‑B1b dominance, identified low‑frequency dwarf alleles at Rht24 and Rht25 that have increased recently, and revealed gene interactions that can fine‑tune plant height, along with evidence of recent selection for photoperiod sensitivity.