Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.
The study reveals that heat tolerance of meiotic division in Arabidopsis thaliana depends on sustained translation of cell‑cycle genes mediated by the protein TAM, which forms specialized condensates under high temperature. Natural variation was used to identify heat‑sensitive and heat‑tolerant TAM alleles, and boosting TAM translation with complementary peptides rescued heat‑induced meiotic defects, highlighting a potential mechanism driving polyploidisation under climate stress.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
Daily Heat Stress Induces Accumulation of Non-functional PSII-LHCII and Donor-side Limitation of PSI via Downregulation of the Cyt bf Complex in Arabidopsis thaliana
The study examined the impact of daily moderate heat stress (38 °C for 4 h) on Arabidopsis thaliana, revealing altered thylakoid ultrastructure and structurally intact but functionally impaired PSII‑LHCII complexes. A pronounced reduction in cytochrome b6f content limited PSI on the donor side, suggesting that Cyt b6f down‑regulation serves as an acclimation mechanism that protects PSI at the expense of overall photosynthetic efficiency.
The study shows that the membrane lipids PI4P, PI(4,5)P2, and phosphatidylserine have distinct spatial and temporal dynamics during lateral root primordium formation in Arabidopsis thaliana, with PI4P acting as a stable basal lipid, PI(4,5)P2 serving as a negative regulator of initiation, and phosphatidylserine increasing after founder cell activation. Using live-cell biosensors, genetic mutants, and an inducible PI(4,5)P2 depletion system, the authors demonstrate that reducing PI(4,5)P2 enhances lateral root initiation and development.
The study investigated how native soil microbes affect heat tolerance in soybean (Glycine max) by comparing plants grown in natural versus microbiome‑disturbed soils under optimal and elevated temperatures. Using 16S rRNA and ITS sequencing alongside non‑targeted root metabolomics, the authors found significant shifts in bacterial and fungal communities, suppressed nodule‑forming bacteria, and altered root metabolites that correlated with reduced nodulation efficiency under heat stress. Integrated multi‑omics analyses linked microbial composition to metabolite profiles and nitrogen‑fixation traits, highlighting a coordinated response of the root physiological system to combined heat and microbiome perturbations.
The study used chlorophyll fluorescence imaging to map non-photochemical quenching (NPQ) gradients along barley leaf axes and found heat stress attenuates NPQ induction, revealing spatial heterogeneity in stress responses. Genome‑wide association and transcriptomic analyses identified candidate genes, notably HORVU.MOREX.r3.3HG0262630, that mediate region‑specific heat responses, highlighting pathways for improving cereal heat resilience.
Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis
Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.
The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.