The study optimized three wheat transformation methods—immature embryo, callus, and in planta injection—by systematically adjusting Agrobacterium strain, bacterial density, acetosyringone concentration, and incubation conditions, achieving transformation efficiencies up to 66.84%. Using these protocols, CRISPR/Cas9 knockout of the negative regulator TaARE1-D produced mutants with increased grain number, spike length, grain size, and a stay‑green phenotype, demonstrating the platform’s potential to accelerate yield and stress‑tolerance improvements in wheat.