The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study used Arabidopsis thaliana autoimmune (DANGEROUS MIX) mutants to dissect the growth–defence trade‑off, identifying two core transcriptomic modules that capture growth and defence programs. Genetic removal of the three ADR1 helper NLRs reversed module expression and preferentially restored growth‑related receptor‑like kinase genes, while chromatin accessibility changes were larger at growth loci, indicating that ADR1‑mediated immune signaling actively suppresses growth genes.