The study profiled the maize (Zea mays) endosperm transcriptome for the first four days after pollination using laser-capture microdissection, revealing temporal co‑expression modules including a fertilization‑activated subset. Network analyses linked MYB‑related transcription factors to basal endosperm transfer layer (BETL) differentiation and E2F transcription factors, together with TOR‑dependent sugar sensing, to early endosperm proliferation and kernel size variation.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
High-quality PacBio HiFi draft genome assemblies were generated for three Bouteloua species (B. curtipendula, B. gracilis, B. eriopoda) with >98.5% BUSCO completeness. Gene prediction with Helixer produced inflated gene counts likely reflecting polyploidy and fragmented predictions, and panEDTA identified 25–40% transposable-element content dominated by LTR retrotransposons. These assemblies provide foundational references for comparative genomics within PACMAD grasses.
RNA sequencing of the halophyte Salicornia europaea revealed that combined hypoxia‑salt stress triggers a unique transcriptional response, with 16% of genes specifically altered and distinct synergistic, antagonistic, and additive effects across functional pathways. Metabolic analyses indicated enhanced sucrose and trehalose metabolism, a shift toward lactate fermentation, and increased proline synthesis, highlighting complex regulatory strategies for coping with concurrent stresses.
In a controlled dry-down experiment, Arabis sagittata showed significantly higher recovery from drought than the endangered Arabis nemorensis, a difference that could not be traced to a single major QTL, indicating a polygenic basis. Transcriptome and small‑RNA sequencing revealed that A. sagittata mounts a stronger transcriptional response, including species‑specific regulation of the conserved drought miRNA miR408, and machine‑learning identified distinct cis‑regulatory motif patterns underlying these divergent stress‑response networks.
The study examined whether colonisation by the arbuscular mycorrhizal fungus Rhizophagus irregularis primes immune responses in barley against the leaf rust pathogen Puccinia hordei. While AMF did not affect disease severity or plant growth, co‑infected leaves showed heightened expression of defence genes and transcriptome reprogramming, including altered protein ubiquitination, indicating a priming mechanism. These results highlight transcriptional and post‑translational pathways through which AMF can enhance barley disease resistance for sustainable crop protection.
Chromosome-level genome assembly of the gerbera (Gerbera hybrida) using HiFi long-read and Hi-C technologies
Authors: Aoyagi, Y. B., Shimada, R., Hirakawa, H., Toyoda, A., Toh, H., Isobe, S., Tajima, N., Shirasawa, K., Horiike, T., Fujii, H., Fujiwara, T., Bamba, M., Nakatsuka, T., Tominaga, A.
The study presents high-quality nuclear and organellar genome assemblies for Gerbera hybrida, generated using PacBio HiFi and Omni-C chromatin capture sequencing, resulting in a 2.32 Gb nuclear genome assembled into 25 scaffolds matching its chromosome number. Annotation identified 36,160 protein‑coding genes and detailed mitochondrial and chloroplast genomes, establishing a valuable genomic resource for molecular breeding and research in Gerbera and the Asteraceae family.
Molecular and Phenotypic Characterization of Telomere Repeat Binding (TRBs) Proteins in Moss: Evolutionary and Functional Perspectives
Authors: Kusova, A., Hola, M., Goffova Petrova, I., Rudolf, J., Zachova, D., Skalak, J., Hejatko, J., Klodova, B., Prerovska, T., Lycka, M., Sykorova, E., Bertrand, Y. J. K., Fajkus, J., Honys, D., Prochazkova Schrumpfova, P.
The study characterizes telomere repeat binding (TRB) proteins in the model moss Physcomitrium patens, demonstrating that individual PpTRB genes are essential for normal protonemal and gametophore development and that loss of TRBs leads to telomere shortening, mirroring findings in seed plants. Transcriptome analysis of TRB mutants shows altered expression of genes linked to transcription regulation and stimulus response, while subcellular localization confirms nuclear residence and mutual interaction of PpTRBs, underscoring their conserved role in telomere maintenance across land plants.
The study characterizes the distinct and overlapping roles of the rice PI paralogs OsMADS2 and OsMADS4 in lodicule specification, flowering time, and floral organ development by analyzing null and double mutants and overexpression lines. Genome-wide binding (ChIP‑seq) and transcriptome (RNA‑seq) analyses identified downstream targets involved in cell division, cell wall remodeling, and osmotic regulation that underpin the observed phenotypes. These findings reveal novel functions for PI paralogs in reproductive development and highlight mechanisms of transcription factor diversification in Oryza sativa.