RNA sequencing of the halophyte Salicornia europaea revealed that combined hypoxia‑salt stress triggers a unique transcriptional response, with 16% of genes specifically altered and distinct synergistic, antagonistic, and additive effects across functional pathways. Metabolic analyses indicated enhanced sucrose and trehalose metabolism, a shift toward lactate fermentation, and increased proline synthesis, highlighting complex regulatory strategies for coping with concurrent stresses.
In a controlled dry-down experiment, Arabis sagittata showed significantly higher recovery from drought than the endangered Arabis nemorensis, a difference that could not be traced to a single major QTL, indicating a polygenic basis. Transcriptome and small‑RNA sequencing revealed that A. sagittata mounts a stronger transcriptional response, including species‑specific regulation of the conserved drought miRNA miR408, and machine‑learning identified distinct cis‑regulatory motif patterns underlying these divergent stress‑response networks.
The study examined whether colonisation by the arbuscular mycorrhizal fungus Rhizophagus irregularis primes immune responses in barley against the leaf rust pathogen Puccinia hordei. While AMF did not affect disease severity or plant growth, co‑infected leaves showed heightened expression of defence genes and transcriptome reprogramming, including altered protein ubiquitination, indicating a priming mechanism. These results highlight transcriptional and post‑translational pathways through which AMF can enhance barley disease resistance for sustainable crop protection.
Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
The study adapted high‑throughput transposable‑element sequencing and introduced the deNOVOEnrich pipeline to map somatic TE insertions in Arabidopsis thaliana, uncovering ~200,000 new events across wild‑type and epigenetic mutant lines. Somatic integration is non‑random and TE‑specific, with families like ONSEN, EVADE, and AtCOPIA21 preferentially targeting chromosomal arms, genic regions, and chromatin marked by H2A.Z, H3K27me3, and H3K4me1, especially near environmentally‑responsive genes such as resistance loci and biosynthetic clusters.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.
The study evaluated how alginate oligosaccharide (AOS) chain length influences the levels of seven key phytohormones in wheat seedlings challenged with Botrytis cinerea. Hormone profiling revealed that mid‑range oligomers (DP 4‑6) most strongly up‑regulate defense‑related hormones (JA, SA, ABA, CTK), whereas longer oligomers (DP 7) most effectively suppress ethylene. These findings suggest that tailoring AOS polymerization can optimize disease resistance and growth in cereal crops.