Using genome‑wide association studies in Arabidopsis thaliana, the authors identified the chromatin‑associated protein CDCA7 as a trans‑regulator that specifically controls CG methylation (mCG) and TE silencing. CDCA7 and its paralog CDCA7β bind the remodeler DDM1, modulating its activity without broadly affecting non‑CG methylation or histone variant deposition, and natural variation in CDCA7 regulatory sequences correlates with local ecological adaptation.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
The study profiled small interfering RNAs (siRNAs) in barley (Hordeum vulgare) seeds differing in viability after controlled long‑term storage, identifying 85,728 differentially expressed siRNAs associated with seed vigor. Trans‑acting siRNAs displayed distinct temporal patterns during imbibition, and functional analyses linked siRNA targets to key processes such as cytochrome activity, root development, and carbohydrate metabolism, suggesting a role in maintaining metabolic activity during germination.
Post-Domestication selection of MKK3 Shaped Seed Dormancy and End-Use Traits in Barley
Authors: Jorgensen, M. E., Vequaud, D., Wang, Y., Andersen, C. B., Bayer, M., Box, A., Braune, K., Cai, Y., Chen, F., Antonio Cuesta-Seijo, J., Dong, H., Fincher, G. B., Gojkovic, Z., Huang, Z., Jaegle, B., Kale, S. M., Krsticevic, F., Roux, P.-M. L., Lozier, A., Lu, Q., Mascher, M., Murozuka, E., Nakamura, S., Simmelsgaard, M. U., Pedas, P. R., Pin, P., Sato, K., Spannagl, M., Rasmussen, M. W., Russell, J., Schreiber, M., Thomsen, H. C., Tulloch, S., Thomsen, N. W., Voss, C., Skadhauge, B., Stein, N., Waugh, R., Willerslev, E., Dockter, C.
The study demonstrates that in barley (Hordeum vulgare) the MAPK pathway, specifically the MKK3 kinase, controls grain dormancy through a combination of haplotype variation, copy-number changes, and intrinsic kinase activity. Historical selection of particular MKK3 haplotypes correlates with climatic pressures, offering a genetic basis to balance short dormancy with resistance to pre‑harvest sprouting under climate change.
A comparative physiological study of persimmon cultivars with flat (Hiratanenashi) and round (Koushimaru) fruit shapes revealed that differences in cell proliferation, cell shape, and size contribute to shape variation. Principal component analysis of elliptic Fourier descriptors tracked shape changes, while histology and transcriptome profiling identified candidate genes, including a WOX13 homeobox gene, potentially governing fruit shape development.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.
The study shows that silencing of NOR2 rRNA genes in Arabidopsis thaliana depends primarily on CHH-context cytosine methylation, particularly mediated by CMT2 and the chromatin remodeler DDM1, rather than CG or CHG methylation. Comparative promoter analysis revealed a prevalence of CHH sites in plant rDNA promoters, explaining why CHH methylation mutants disrupt NOR2 silencing more strongly, while NOR2 loci are hyper‑methylated and more condensed than NOR4.