The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.
The study shows that silencing of NOR2 rRNA genes in Arabidopsis thaliana depends primarily on CHH-context cytosine methylation, particularly mediated by CMT2 and the chromatin remodeler DDM1, rather than CG or CHG methylation. Comparative promoter analysis revealed a prevalence of CHH sites in plant rDNA promoters, explaining why CHH methylation mutants disrupt NOR2 silencing more strongly, while NOR2 loci are hyper‑methylated and more condensed than NOR4.
The study examined 57 global accessions of the invasive hybrid Kalanchoe xhoughtonii and its parents, revealing extensive cytogenetic and genomic variation among morphotypes but identifying a single tetraploid genotype (morphotype A) that dominates worldwide. This genotype exhibits remarkable genetic uniformity, high phenotypic plasticity, and prolific vegetative propagation, illustrating how hybridization and polyploidy can drive rapid invasive success.