The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study employed a multi‑omics workflow (transcriptomics, ribosome profiling, and proteomics) to uncover small peptides encoded by long non‑coding RNAs (LSEPs) in rice, finding that over 40% of surveyed lncRNAs associate with ribosomes. An optimized small‑peptide extraction followed by LC‑MS/MS identified 403 LSEPs, confirming the peptide‑coding capacity of plant lncRNAs and providing a scalable pipeline for large‑scale screening.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
The study shows that silencing of NOR2 rRNA genes in Arabidopsis thaliana depends primarily on CHH-context cytosine methylation, particularly mediated by CMT2 and the chromatin remodeler DDM1, rather than CG or CHG methylation. Comparative promoter analysis revealed a prevalence of CHH sites in plant rDNA promoters, explaining why CHH methylation mutants disrupt NOR2 silencing more strongly, while NOR2 loci are hyper‑methylated and more condensed than NOR4.