Phylogenetic analysis reveals that non‑seed plants, exemplified by the liverwort Marchantia polymorpha, possess a streamlined repertoire of cyclin and CDK genes, with only three cyclins active in a phase‑specific manner during vegetative development. Single‑cell RNA‑seq and fluorescent reporter assays, combined with functional overexpression studies, demonstrate the distinct, non‑redundant roles of MpCYCD;1, MpCYCA, and MpCYCB;1 in G1 entry, S‑phase progression, and G2/M transition, respectively.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
The study characterizes all seven malic enzyme genes in tomato, analyzing their tissue-specific expression, temperature and ethylene responsiveness, and linking specific isoforms to metabolic processes such as starch and lipid biosynthesis during fruit development. Phylogenetic, synteny, recombinant protein biochemical assays, and promoter analyses were used to compare tomato enzymes with Arabidopsis counterparts, revealing complex evolutionary dynamics that decouple phylogeny from functional orthology.
The study sampled 94 individuals from eight Atlantic Forest populations to assess morphological and genetic variation among Inga subnuda subspecies and the related Inga vera subsp. affinis. Using plastid trnD‑trnT spacer and nuclear ITS1/2 sequences, phylogenetic analyses revealed distinct structuring of I. subnuda subsp. subnuda and a cohesive group comprising I. subnuda subsp. luschnathiana and I. vera subsp. affinis, indicating retention of ancestral polymorphism from recent diversification and prompting a taxonomic revision of subsp. luschnathiana.