The study reveals that the plant immune regulator NPR1 is modulated by opposing post‑translational modifications mediated by the nutrient‑sensing kinases TOR and SnRK1. Under normal conditions TOR phosphorylates NPR1 at Ser‑55/59 to suppress its activity, while salicylic‑acid‑induced SnRK1 activation inhibits TOR and phosphorylates NPR1 at Ser‑557, thereby activating NPR1 and linking metabolic status to immune signaling.
A comparative physiological study of persimmon cultivars with flat (Hiratanenashi) and round (Koushimaru) fruit shapes revealed that differences in cell proliferation, cell shape, and size contribute to shape variation. Principal component analysis of elliptic Fourier descriptors tracked shape changes, while histology and transcriptome profiling identified candidate genes, including a WOX13 homeobox gene, potentially governing fruit shape development.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study examined early metabolic responses to salt stress in a salt‑tolerant alfalfa cultivar, focusing on SnRK1 activity, sucrose, and trehalose‑6‑phosphate dynamics during leaf expansion. Hydroponically grown plants exposed to 200 mM NaCl showed rapid, wave‑like SnRK1 activation within 1 hour, a transient decline in chloroplast performance, and an uncoupling of the Tre6P‑sucrose regulatory link, with a second SnRK1 peak correlating with reduced leaf growth. Exogenous sucrose inhibited SnRK1 activity, highlighting early SnRK1 activation as a pivotal component of salt stress adaptation.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.