Novel substrate affinity of FaCCR1 and FaCCR1/FaOCT4 expression control the content of medium-chain esters in strawberry fruit
Authors: Roldan-Guerra, F. J., Amorim-Silva, V., Jimenez, J., Mari-Albert, A., Torreblanca, R., Ruiz del Rio, J., Botella, M. A., Granell, A., Sanchez-Sevilla, J. F., Castillejo, C., Amaya, I.
The study identified a major QTL on chromosome 6A that accounts for 40% of variation in medium-chain ester (MCE) levels in strawberry fruit, pinpointing FaCCR1 and FaOCT4 as the causal genes. Functional validation through subcellular localization, transient overexpression, enzymatic assays, and molecular docking demonstrated that FaCCR1 also catalyzes MCE precursor reactions, and a KASP marker in FaOCT4 was developed for breeding fragrant cultivars.
The study identified seven adult plant resistance QTL for oat crown rust using two recombinant inbred line populations, with a major QTL (QPc_GS7_4A.2) on chromosome 4A closely linked to the Pc61 resistance gene. KASP markers targeting SNPs tightly linked to the four most significant QTL were developed, and genetic and haplotype analyses confirmed the association of QPc_GS7_4A.2 with both seedling and adult plant resistance, providing valuable tools for oat breeding.
The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
The study investigates the genetic basis of sex determination in Cannabis sativa, identifying a X‑chromosome locus (Monoecy1) that governs the switch between dioecy and monoecy. Transcriptomic and genomic analyses reveal three tightly linked genes with sex‑specific expression, suggesting their combined action controls both flower type and individual sex phenotype.
MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
The study validates and quantifies biological nitrogen fixation in Mexican maize varieties and assesses a double‑haploid population derived from an elite inbred (PHZ51) crossed with these landraces. Aerial root traits show moderate to high heritability, and QTL mapping reveals multiple loci influencing root number, node occurrence, and diameter, with most favorable alleles originating from the landraces. The authors suggest that pyramiding the identified QTL into elite germplasm could enhance maize’s BNF capacity, pending field validation.
The study used QTL mapping in two F1 Plasmopara viticola populations to locate avirulence genes linked to grapevine resistance loci Rpv3.1, Rpv10, and Rpv12, confirming AvrRpv3.1 and identifying AvrRpv12, which harbors large deletions of RXLR effector genes. Additionally, a dominant locus responsible for partial Rpv10 breakdown was discovered, revealing diverse evolutionary mechanisms—including structural rearrangements and admixture—that enable the pathogen to overcome host resistance.
A comparative physiological study of persimmon cultivars with flat (Hiratanenashi) and round (Koushimaru) fruit shapes revealed that differences in cell proliferation, cell shape, and size contribute to shape variation. Principal component analysis of elliptic Fourier descriptors tracked shape changes, while histology and transcriptome profiling identified candidate genes, including a WOX13 homeobox gene, potentially governing fruit shape development.