Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.
The study presents a deep‑learning pipeline that uses state‑of‑the‑art convolutional neural networks to automatically estimate the establishment of perennial groundcovers in agricultural research plots from smartphone images. By employing region‑of‑interest markers and deploying the models on AWS SageMaker with a lightweight Django web interface, the approach provides fast, objective, and reproducible assessments that can be adopted by researchers and growers across the Midwest.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
Unraveling the cis-regulatory code controlling abscisic acid-dependent gene expression in Arabidopsis using deep learning
Authors: Opdebeeck, H., Smet, D., Thierens, S., Minne, M., De Beukelaer, H., Zuallaert, J., Van Bel, M., Van Montagu, M., Degroeve, S., De Rybel, B., Vandepoele, K.
The study used an interpretable convolutional neural network to predict ABA responsiveness from proximal promoter sequences in Arabidopsis thaliana, revealing both known ABF-binding motifs and novel regulatory elements. Model performance was boosted by advanced data augmentation, and predicted regulatory regions were experimentally validated using reporter lines, confirming the inferred cis‑regulatory code.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
The study presents GenoRetriever, an interpretable deep learning framework trained on STRIPE-seq data from soybean and other crops, that predicts transcription start site locations and usage by identifying 27 core promoter motifs. Validation using in silico motif insertions, saturation mutagenesis, and CRISPR‑Cas9 promoter editing demonstrates high predictive accuracy and reveals domestication‑driven motif usage shifts and lineage‑specific effects. The tool is provided via a web server for promoter analysis and design, offering a new resource for plant functional genomics and crop improvement.
The Global Wheat Full Semantic Organ Segmentation (GWFSS) dataset
Authors: Wang, Z., Zenkl, R., Greche, L., De Solan, B., Bernigaud Samatan, L., Ouahid, S., Visioni, A., Robles-Zazueta, C. A., Pinto, F., Perez-Olivera, I., Reynolds, M. P., Zhu, C., Liu, S., D'argaignon, M.-P., Lopez-Lozano, R., Weiss, M., Marzougui, A., Roth, L., Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B., Fernandez, J., Chapman, S., Najafian, K., Stavness, I., Wang, H., Guo, W., Virlet, N., Hawkesford, M., Chen, Z., David, E., Gillet, J., Irfan, K., Comar, A., Hund, A.
The Global Wheat Dataset Consortium released a comprehensive semantic segmentation dataset (GWFSS) of wheat organs across developmental stages, comprising 1,096 fully annotated images and 52,078 unannotated images from 11 institutions. Models based on DeepLabV3Plus and Segformer were trained, with Segformer achieving ≈90% mIoU for leaves and spikes but lower precision (54%) for stems, while also enabling weed exclusion and discrimination of necrotic, senescent, and residue tissues.
The study introduces an in-soil fiber Bragg grating (FBG) sensing system that continuously records three-dimensional strain from growing pseudo-roots, enabling non‑destructive monitoring of root architecture. Using two ResNet models, the system predicts root width and depth with over 90% accuracy, and performance improves to 96‑98% after retraining on data from actual corn (Zea mays) roots over a 30‑day period. This prototype demonstrates potential for scalable, real‑time root phenotyping and broader soil environment sensing.
Transcriptome responses of two Halophila stipulacea seagrass populations from pristine and impacted habitats, to single and combined thermal and excess nutrient stressors, reveal local adaptive features and core stress-response genes
Authors: Nguyen, H. M., Yaakov, B., Beca-Carretero, P., Procaccini, G., Wang, G., Dassanayake, M., Winters, G., Barak, S.
The study examined transcriptomic responses of the tropical seagrass Halophila stipulacea from a pristine and an impacted site under single and combined thermal and excess nutrient stress in mesocosms. Combined stress caused greater gene reprogramming than individual stresses, with thermal effects dominating and the impacted population showing reduced plasticity but higher resilience. Core stress‑response genes were identified as potential early field indicators of environmental stress.