The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The Global Wheat Full Semantic Organ Segmentation (GWFSS) dataset
Authors: Wang, Z., Zenkl, R., Greche, L., De Solan, B., Bernigaud Samatan, L., Ouahid, S., Visioni, A., Robles-Zazueta, C. A., Pinto, F., Perez-Olivera, I., Reynolds, M. P., Zhu, C., Liu, S., D'argaignon, M.-P., Lopez-Lozano, R., Weiss, M., Marzougui, A., Roth, L., Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B., Fernandez, J., Chapman, S., Najafian, K., Stavness, I., Wang, H., Guo, W., Virlet, N., Hawkesford, M., Chen, Z., David, E., Gillet, J., Irfan, K., Comar, A., Hund, A.
The Global Wheat Dataset Consortium released a comprehensive semantic segmentation dataset (GWFSS) of wheat organs across developmental stages, comprising 1,096 fully annotated images and 52,078 unannotated images from 11 institutions. Models based on DeepLabV3Plus and Segformer were trained, with Segformer achieving ≈90% mIoU for leaves and spikes but lower precision (54%) for stems, while also enabling weed exclusion and discrimination of necrotic, senescent, and residue tissues.
The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.
RNA‑seq of 328 wheat lines using a pan‑genome reference uncovered over 20,000 additional transcripts beyond the Chinese Spring genome and enabled construction of a pan‑gene eQTL regulatory atlas. Multi‑omics integration identified 231 high‑confidence candidate genes influencing 34 agronomic traits and powdery mildew resistance, with functional validation showing 80% of candidates affecting trait phenotypes via an EMS mutant library.
This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.
The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.
Transcriptome responses of two Halophila stipulacea seagrass populations from pristine and impacted habitats, to single and combined thermal and excess nutrient stressors, reveal local adaptive features and core stress-response genes
Authors: Nguyen, H. M., Yaakov, B., Beca-Carretero, P., Procaccini, G., Wang, G., Dassanayake, M., Winters, G., Barak, S.
The study examined transcriptomic responses of the tropical seagrass Halophila stipulacea from a pristine and an impacted site under single and combined thermal and excess nutrient stress in mesocosms. Combined stress caused greater gene reprogramming than individual stresses, with thermal effects dominating and the impacted population showing reduced plasticity but higher resilience. Core stress‑response genes were identified as potential early field indicators of environmental stress.