Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
PlantCV v4: Image analysis software for high-throughput plant phenotyping
Authors: Schuhl, H., Brown, K. E., Sheng, H., Bhatt, P. K., Gutierrez, J., Schneider, D., Casto, A. L., Acosta-Gamboa, L., Ballenger, J. G., Barbero, F., Braley, J., Brown, A. M., Chavez, L., Cunningham, S., Dilhara, M., Dimech, A. M., Duenwald, J. G., Fischer, A., Gordon, J. M., Hendrikse, C., Hernandez, G. L., Hodge, J. G., Huber, M., Hurr, B. M., Jarolmasjed, S., Medina Jimenez, K., Kenney, S., Konkel, G., Kutschera, A., Lama, S., Lohbihler, M., Lorence, A., Luebbert, C., Ly, N., Manching, H. K., Marrano, A., Meerdink, S., Miklave, N. M., Mudrageda, P., Murphy, K. M., Peery, J. D., Pierik, R., Polyd
PlantCV v4 is an open-source Python framework that simplifies image-based plant phenotyping by providing extensive tutorials and streamlined installation, enabling users with limited coding skills to automate trait extraction. The release adds support for fluorescence, thermal, and hyperspectral imaging and introduces a new subpackage for morphological measurements such as leaf angle, which is validated against manual data collection methods.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The first nested association mapping (NAM) population for outbreeding Italian ryegrass reveals candidate genes for seed shattering and related traits
Authors: Kiesbauer, J., Grieder, C., Sindelar, M., Schlatter, L. H., Ariza-Suarez, D., Yates, S., Stoffel-Studer, I., Copetti, D., Studer, B., Koelliker, R.
The study generated the first nested association mapping (NAM) population in the outcrossing forage grass Italian ryegrass (Lolium multiflorum) to investigate seed shattering and related traits, using ddRAD sequencing of 708 F2 individuals combined with whole-genome sequencing of 24 founders to obtain over 3 million SNPs for population structure, parentage, and GWAS analyses. Seven QTL were identified for seed shattering and other agronomic traits, leading to the discovery of candidate genes, including one associated with ripening pathways that explained 10% of phenotypic variance, demonstrating the utility of NAM for dissecting complex traits in outcrossing grasses.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.