Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study reveals that each individual plant possesses a statistically unique leaf appearance that can be discriminated using convolutional neural network (CNN) based deep learning, enabling a "plant face" recognition concept. Applications demonstrated include distinguishing leaves from the same species/cultivar, analyzing leaflet positional patterns on compound leaves, assessing bilateral symmetry, and detecting morphological differences linked to stem chirality, highlighting the encoding of genetic, environmental, and developmental information in leaf morphology.
The study presents an optimized Agrobacterium-mediated transformation protocol for bread wheat that incorporates a GRF4‑GIF1 fusion to enhance regeneration and achieve genotype‑independent transformation across multiple cultivars. The approach consistently improves transformation efficiency while limiting pleiotropic effects, offering a versatile platform for functional genomics and gene editing in wheat.
The study generated a phenotypic dataset for 550 Lactuca accessions, including 20 wild relatives, and applied an iterative two‑step GWAS using a jointly processed SNP set for cultivated lettuce (L. sativa) and its wild progenitor (L. serriola) to dissect trait loci. Known and novel QTLs for anthocyanin accumulation, leaf morphology, and pathogen resistance were identified, with several L. serriola‑specific QTLs revealing unique genetic architectures, underscoring the breeding value of wild lettuce species.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
Leaf shape modulates climate trait relationships in the wild species Chenopodium hircinum (Amaranthaceae)
Authors: Rodriguez, J., Quipildor, V., Giamminola, E., Bramardi, S., Jarvis, D., Maughan, J., Xu, J., Farooq, H., Ortega-Baes, P., Jellen, E., Tester, M., Bertero, D., Curti, R. N.
The study examined natural variation in leaf shape and linked functional-physiological traits of Chenopodium hircinum grown in a common garden, finding that leaf morphology correlates with the climate of population origin while functional traits associate directly with leaf shape. Landmark-based morphometric analysis identified a shape axis (deeply lobed versus rounded) linked to leaf mass per area and stomatal conductance, indicating morphology mediates a resource-use continuum and highlighting the importance of phenotypic plasticity for ecological adaptation.