Imputation integrates single-cell and spatial gene expression data to resolve transcriptional networks in barley shoot meristem development
Authors: Demesa-Arevalo, E., Dorpholz, H., Vardanega, I., Maika, J. E., Pineda-Valentino, I., Eggels, S., Lautwein, T., Kohrer, K., Schnurbusch, T., von Korff, M., Usadel, B., Simon, R.
The study uses an imputation strategy that integrates deep single-cell RNA sequencing with spatial gene expression data to map transcriptional dynamics across barley inflorescence development at cellular resolution. By leveraging the BARVISTA web interface, the authors identify key transcriptional events in meristem founder cells, characterize complex branching mutants, and reconstruct spatio‑temporal trajectories of flower organogenesis, offering insights for targeted trait manipulation.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
A forward genetic screen in light-grown Arabidopsis seedlings identified the Evening Complex component ELF3 as a key inhibitor of phototropic hypocotyl bending under high red:far-red and blue light, acting upstream of PIF4/PIF5. ELF3 and its partner LUX also mediate circadian regulation of phototropism, and the orthologous ELF3 in Brachypodium distachyon influences phototropism in the opposite direction.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The study tests whether the circadian clock component ELF3 shapes developmental trait heterogeneity, proposing that faster‑developing populations are more heterogeneous early but less so at maturity, whereas slower growers show the opposite pattern. Experiments with Arabidopsis elf3 and barley Hvelf3 mutants confirmed these predictions, showing ELF3 influences hypocotyl and bolting variability via maturation rate, and that smaller barley plants exhibit increased osmotic stress resilience, suggesting ELF3‑driven heterogeneity serves as a bet‑hedging strategy.