Metagenomic pool sequencing of infected maize leaves was used to monitor the population dynamics of the fungal pathogen Exserohilum turcicum, revealing a recent shift from local clonal lineages to tropical Kenyan lineages in a Swiss agricultural region. The novel leaf‑pooling approach enabled cost‑effective, large‑scale sampling, while phyllobiome analyses showed consistent microbial communities across maize varieties.
Gene regulatory network analysis of somatic embryogenesis identifies morphogenic genes that increase maize transformation frequency
Authors: Renema, J., Luckicheva, S., Verwaerde, I., Aesaert, S., Coussens, G., De Block, J., Grones, C., Eekhout, T., De Rybel, B., Brew-Appiah, R. A. T., Bagley, C. A., Hoengenaert, L., Vandepoele, K., Pauwels, L.
The study co‑expressed BABY BOOM and WUSCHEL2 in maize embryos and used single‑cell transcriptomics to infer cell‑type‑specific gene regulatory networks underlying induced somatic embryogenesis. By prioritizing and functionally validating four novel transcription factors, the authors enhanced maize transformation efficiency and produced fertile transgenic plants.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study quantifies de novo insertions of the maize Mutator (Mu) transposon across four tissue types, achieving detection of mutations at a frequency of 1 in 16,000. While allele frequency distributions are reproducible within a tissue, they differ markedly between tissues, with roots showing few high-frequency insertions and endosperm displaying many low-frequency ones. Reanalysis of pollen data suggests that observed late Mu activity is better explained by cell division dynamics rather than ongoing transposition.
The study applied the STOmics spatial transcriptomics platform to map gene expression at subcellular resolution in developing wheat (Triticum aestivum) seeds during grain filling, analyzing over four million transcripts. Eight functional cellular groups were identified, including four distinct endosperm clusters with radial expression patterns and novel marker genes, and subgenome‑biased expression was observed among specific paralogs. These results highlight spatial transcriptomics as a powerful tool for uncovering tissue‑specific and polyploid‑specific gene regulation in seeds.
Spatial and single-cell transcriptomics capture two distinct cell states in plant immunity
Authors: Hu, Y., Schaefer, R., Rendleman, M., Slattery, A., Cramer, A., Nahiyan, A., Breitweiser, L., Shah, M., Kaehler, E., Yao, C., Bowling, A., Crow, J., May, G., Tabor, G., Thatcher, S., Uppalapati, S. R., Muppirala, U., Deschamps, S.
The study combined spatial transcriptomics and single-nuclei RNA sequencing to map soybean (Glycine max) responses to Asian soybean rust caused by Phakopsora pachyrhizi, revealing two distinct host cell states: pathogen‑occupied regions and adjacent non‑infected regions that show heightened defense gene expression. Gene co‑expression network analysis identified a key immune‑related module active in the stressed cells, highlighting a cell‑non‑autonomous defense mechanism.
The study validates and quantifies biological nitrogen fixation in Mexican maize varieties and assesses a double‑haploid population derived from an elite inbred (PHZ51) crossed with these landraces. Aerial root traits show moderate to high heritability, and QTL mapping reveals multiple loci influencing root number, node occurrence, and diameter, with most favorable alleles originating from the landraces. The authors suggest that pyramiding the identified QTL into elite germplasm could enhance maize’s BNF capacity, pending field validation.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
The study characterizes the protein and lipid composition of chloroplast plastoglobules in the B73 maize line during a water-deficit and recovery time course, identifying key polar and neutral lipids and abundant fibrillin proteins. Quantitative proteomics revealed a strong association between Fibrillin 4 and plastoquinone‑9, suggesting a role in redox and prenyl‑lipid metabolism, thereby establishing a foundation for leveraging plastoglobules to enhance crop drought resilience.
The study evaluated how modest temperature increases affect corn smut disease (Ustilago maydis) severity across multiple maize cultivars, generating extensive phenotypic and transcriptomic data. RNA‑seq and gene‑expression association analyses revealed temperature‑dependent expression changes, pinpointing GIBBERELLIC ACID STIMULATED TRANSCRIPT‑LIKE4 (GSL4) and γ‑aminobutyric acid as key infection factors, which were subsequently validated in vivo.