Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The review examines the genetic networks governing spikelet number per spike (SNS) in wheat, highlighting how the balance between inflorescence meristem activity and the timing of terminal spikelet transition determines yield potential. It discusses how mutations affecting meristem identity can create supernumerary spikelets, the trade-offs of such traits, and recent advances using spatial transcriptomics, single‑cell analyses, and multi‑omics to identify new SNS genes for breeding.
A genome-wide survey of the white jute (Corchorus capsularis) identified 34 laccase genes, with expression profiling indicating most are active in phloem and some are up‑regulated during development and under abiotic stress. Comparative analysis with Arabidopsis and reduced expression in a low‑lignin mutant highlighted CcaLAC28 and CcaLAC32 as key candidates for regulating fibre lignification, offering targets for breeding low‑lignin jute varieties.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Spatiotemporal regulation of arbuscular mycorrhizal symbiosis at cellular resolution
Authors: Chancellor, T., Ferreras-Garrucho, G., Akmakjian, G. Z., Montero, H., Bowden, S. L., Hope, M., Wallington, E., Bhattacharya, S., Korfhage, C., Bailey-Serres, J., Paszkowski, U.
The study applied dual-species spatial transcriptomics at single-cell resolution to map plant and fungal gene activity in rice roots colonized by Rhizophagus irregularis, revealing transcriptional heterogeneity among morphologically similar arbuscules. By pioneering an AM-inducible TRAP-seq using stage‑specific promoters, the authors uncovered stage‑specific reprogramming of nutrient transporters and defence genes, indicating dynamic regulation of nutrient exchange and arbuscule lifecycle.
The study applied spatial transcriptomics to map the transcriptional landscape of wheat (Triticum aestivum) inflorescences during spikelet development, revealing two distinct regions—a RAMOSA2‑active primordium and an ALOG1‑expressing boundary. Developmental assays showed that spikelets arise from meristematic zones accompanied by vascular rachis formation, identifying key regulators that could be targeted to improve spikelet number and yield.
An optimized workflow was developed to apply the Xenium in situ sequencing platform to formalin‑fixed paraffin‑embedded (FFPE) sections of Medicago truncatula roots and nodules, incorporating customized tissue preparation, probe design, and imaging to overcome plant‑specific challenges such as cell wall autofluorescence. The protocol was validated across nodule developmental stages using both a 50‑gene panel for mature cell identity and an expanded 480‑gene panel covering multiple cell types, providing a scalable high‑resolution spatial transcriptomics method adaptable to other plant systems.
The study examined how tomato (Solanum lycopersicum) plants respond hormonally to infection by Pseudomonas syringae pv. tomato DC3000 at two different temperatures, revealing temperature‑dependent expression of marker genes for salicylic acid, jasmonic acid, and abscisic acid pathways, while ethylene‑related genes remained unchanged. These results underscore the intricate interplay between host, pathogen, and environmental conditions in shaping plant defence.
The study compared tissue‑specific transcriptomes of the Australian pitcher plant Cephalotus follicularis with existing data from the Asian pitcher plant Nepenthes gracilis to assess molecular convergence underlying their similar leaf morphologies. Both species showed overlapping gene expression in functionally equivalent tissues and shared transcriptional activation of amino‑acid metabolism and protein synthesis after feeding, while exhibiting distinct regulation of digestive enzyme genes and several cases of combined expression and protein‑sequence convergence in glandular tissues.
The study investigated whether expression of Dormancy-Associated MADS-BOX genes DAM3 and DAM4 inversely correlates with vegetative growth during semi-dormancy induction and breaking in cultivated strawberry. DAM3 and DAM4 expression showed negative correlations with leaf area and petiole length, with DAM4 particularly reflecting growth during dormancy breaking, while no cultivar-specific chill requirement or leaf-type differences were detected. These findings support DAM3 and DAM4 as regulators of semi‑dormancy in Fragaria × ananassa.