The study examined transposable element (TE) silencing in the duckweed Spirodela polyrhiza, which exhibits unusually low DNA methylation, scarce 24‑nt siRNAs, and missing RdDM components. While degenerated TEs lack DNA methylation and H3K9me2, they retain heterochromatin marks H3K9me1 and H3K27me1, whereas the few intact TEs show high DNA methylation and H3K9me2, indicating a shift in RdDM focus toward potentially active TEs and suggesting heterochromatin can be maintained independently of DNA methylation in flowering plants.