Latest 27 Papers

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

Dynamic ASK1 proximity networks uncover SCF-dependent and noncanonical roles in ABA and drought adaptation

Authors: Rodriguez-Zaccaro, F. D., Moe-Lange, J., Malik, S., Montes-Serey, C., Hamada, N., Groover, A., Walley, J., Shabek, N.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.22.696057

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study maps the in vivo proximity interactome of Arabidopsis SKP1-LIKE 1 (ASK1) under acute abscisic acid (ABA) signaling and prolonged drought using TurboID-based proximity labeling and quantitative proteomics, revealing condition-specific networks that include both canonical SCF modules and diverse noncanonical partners. Overexpression of ASK1 shifts proteome composition toward drought‑protective and ABA‑responsive proteins while repressing immune and ROS‑scavenging pathways, highlighting ASK1 as a hub that integrates SCF‑dependent and independent pathways to reprogram transcription, translation, and proteostasis during stress adaptation.

ASK1 SCF ubiquitin ligases abscisic acid signaling drought stress TurboID proximity labeling

In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants

Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693997

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.

alternative splicing branch point recognition AtSF1 circadian clock regulation plant immunity

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Cellular energy sensor SnRK1 suppresses salicylic acid-dependent and -independent defenses and bacterial resistance in Arabidopsis

Authors: Jie, L., Sanagi, M., Yasuda, S., Yamada, K., Ejima, S., Sugisaki, A., Takagi, J., Nomoto, M., Xin, X., Tada, Y., Saijo, Y., Sato, T.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.10.01.679707

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.

SnRK1 salicylic acid signaling plant immunity energy status high humidity

Cis-regulatory architecture downstream of FLOWERING LOCUS T underlies quantitative control of flowering

Authors: Zhou, H.-R., Doan, D. T. H., Hartwig, T., Turck, F.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678055

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.

FLOWERING LOCUS T enhancer architecture cis‑regulatory logic CRISPR/Cas9 chromatin accessibility

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

NUDIX Hydrolases Target Specific Inositol Pyrophosphates and Regulate Phosphate Homeostasis and Bacterial Pathogen Susceptibility in Arabidopsis

Authors: Schneider, R., Lami, K., Prucker, I., Stolze, S. C., Strauss, A., Schmidt, J. M., Bartsch, S. M., Langenbach, K., Lange, E., Ritter, K., Furkert, D., Faiss, N., Kumar, S., Hasan, M. S., Makris, A., Krusenbaum, L., Wege, S., Belay, Y. Z., Kriescher, S., The, J., Harings, M., Grundler, F., Ried-Lasi, M. K., Schoof, H., Gaugler, P., Kamleitner, M., Fiedler, D., Nakagami, H., Giehl, R. F., Lahaye, T., Bhattacharjee, S., Jessen, H. J., Gaugler, V., Schaaf, G.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.10.18.619122

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified two subclades of Arabidopsis NUDIX hydrolases that selectively hydrolyze distinct inositol pyrophosphate isomers, with subclade I targeting 4-InsP7 and subclade II targeting 3-InsP7 in a Mg2+-dependent manner. Loss-of-function mutants of subclade II NUDTs displayed disrupted phosphate and iron homeostasis, elevated 1/3-InsP7 levels, and increased resistance to Pseudomonas syringae, revealing roles in nutrient signaling and plant immunity, while cross-kingdom analyses showed conserved PP-InsP‑metabolizing activities.

Inositol pyrophosphates NUDIX hydrolases phosphate homeostasis iron homeostasis plant immunity

Cell-type specific gating of gene regulatory modules as a hallmark of early immune responses in Arabidopsis leaves

Authors: Wang, S., Bezrukov, I., Wu, P.-J., Gauss, H., Timmermans, M., Weigel, D.

Date: 2025-08-01 · Version: 1
DOI: 10.1101/2025.08.01.668105

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used single‑cell transcriptomics to compare Arabidopsis thaliana leaf cell responses during pattern‑triggered and effector‑triggered immunity, revealing that core defense modules are broadly shared but differ in timing, intensity, and cell‑type specific receptor dynamics. Distinct mesophyll subpopulations showed divergent resilience patterns, and gene regulatory network analysis identified WRKY‑regulated and salicylic‑acid biosynthesis modules, with the cue1-6 mutant confirming robustness of core immune responses while exposing cryptic sucrose‑responsive pathways.

single-cell RNA sequencing Arabidopsis thaliana plant immunity PTI and ETI WRKY transcription factors

Large-Scale Multigenome-Wide Study Predicts the Existence of Transmembrane Phosphotransfer Proteins in Plant MSP Signaling Pathway

Authors: Lomin, S. N., Brenner, W. G., Savelieva, E. M., Arkhipov, D. V., Romanov, G. A.

Date: 2025-07-31 · Version: 1
DOI: 10.1101/2025.07.28.667123

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.

transmembrane HPt proteins multistep phosphorelay phylogenetic analysis molecular modeling plant signaling
Page 1 of 3 Next