Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Esca Disease triggers local transcriptomic response and systemic DNA methylation changes in grapevine

Authors: Berger, M. M. J., Garcia, V., Rubio, B., Bortolami, G., Gambetta, G., Delmas, C. E. L., Gallusci, P.

Date: 2025-08-13 · Version: 1
DOI: 10.1101/2025.08.11.669596

Category: Plant Biology

Model Organism: Vitis vinifera

AI Summary

The study examined molecular responses in grapevine leaves with and without esca symptoms, using metabolite profiling, RNA‑seq and whole‑genome bisulfite sequencing. Metabolic and transcriptomic changes were confined to symptomatic leaves and linked to local DNA‑methylation alterations, while asymptomatic leaves showed distinct but overlapping methylation patterns, some present before symptoms, indicating potential epigenetic biomarkers for early disease detection.

Esca Vitis vinifera metabolite profiling RNA‑seq DNA methylation

Stress-dependent responses of grapevine wood and fungal pathogen activity under esca and drought

Authors: Chambard, M., Cantu, D., Bortolami, G., Dell'Acqua, N., Ferrer, N., Gambetta, G., Garcia, J., Gastou, P., Massonnet, M., Moretti, S., Rochepeau, A., Petriacq, P., Foulongne-Oriol, M., Delmas, C. E. L.

Date: 2025-08-07 · Version: 1
DOI: 10.1101/2025.08.05.668645

Category: Plant Biology

Model Organism: Vitis vinifera

AI Summary

The study used wood metatranscriptomics, metabolomics, and metabarcoding to compare grapevine (Vitis vinifera) responses to drought and esca leaf symptom expression, revealing distinct but overlapping transcriptomic and metabolic signatures, including activation of phenylpropanoid and stilbenoid pathways. Drought reduced esca symptom expression, associated with decreased abundance of the wood‑decay fungus Fomitiporia mediterranea and altered fungal virulence factor expression, while increasing the relative abundance and anti‑oxidative gene expression of Phaeomoniella chlamydospora.

drought stress esca disease grapevine (Vitis vinifera) wood metatranscriptomics metabolomics