Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 50 Papers

Vacuolar invertase knockout enhances drought tolerance in potato plants

Authors: Roitman, M., Teper-Bamnolker, P., Doron-Faigenboim, A., Sikron, N., Fait, A., Vrobel, O., Tarkowski, P., Moshelion, M., Bocobza, S., Eshel, D.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.12.01.691554

Category: Plant Biology

Model Organism: Solanum tuberosum

AI Summary

CRISPR/Cas9 knockout of the vacuolar invertase gene (StVInv) in potato enhanced drought resilience, with mutants maintaining higher stomatal conductance, transpiration, and photosynthetic efficiency, leading to improved agronomic water-use efficiency and biomass under water limitation. Metabolomic profiling showed accumulation of galactinol and raffinose, while ABA levels were reduced, indicating altered osmoprotective and hormonal responses that support sustained growth during drought.

drought stress vacuo lar invertase knockout CRISPR/Cas9 raffinose family oligosaccharides water-use efficiency

Ca2+-driven nanodomain enrichment and plasma membrane proteome remodelling enable bacterial outer membrane vesicle perception in rice

Authors: Mondal, I., Das, H., Behera, S.

Date: 2025-12-02 · Version: 2
DOI: 10.1101/2025.09.17.676730

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.

Xanthomonas oryzae pv. oryzae outer membrane vesicles calcium signaling plasma membrane nanodomains proteomics

Transcriptome and hormone regulations shape drought stress-dependent Fusarium Head Blight susceptibility in different barley genotypes

Authors: Hoheneder, F., Steidele, C. E., Gigl, M., Dawid, C., Hueckelhoven, R.

Date: 2025-11-25 · Version: 1
DOI: 10.1101/2025.11.23.689882

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

Four barley genotypes were examined under simultaneous Fusarium culmorum infection and drought, revealing genotype-dependent Fusarium Head Blight severity and largely additive transcriptomic responses dominated by drought. Co‑expression and hormone profiling linked ABA and auxin to stress‑specific gene modules, and a multiple linear regression model accurately predicted combined‑stress gene expression from single‑stress data, suggesting modular regulation.

Fusarium Head Blight drought stress barley hormone profiling transcriptome analysis

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology

Immunovisualization of spatial changes in leaves and root tissue associated with drought stress in wheat (Triticum aestivum L.)

Authors: Leszczuk, A., Kutyrieva-Nowak, N., Skrzypek, T.

Date: 2025-10-07 · Version: 1
DOI: 10.1101/2025.10.06.680837

Category: Plant Biology

Model Organism: General

AI Summary

The study employed immunofluorescence labeling and fluorescence intensity quantification to examine tissue-specific cellular modifications in plants under drought stress, revealing targeted alterations in proteoglycans, polysaccharides, and AGPs in leaves and roots. These findings highlight the importance of in planta analyses for accurately capturing stress-induced structural changes.

drought stress immunofluorescence labeling proteoglycans arabinogalactan proteins (AGP) tissue-specific adaptation

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

Oxidative stress-induced proteolytic activation of polyphenol oxidase triggers an oxidized flavonoids-mediated stress signaling in Camellia sinensis

Authors: Mohapatra, S., Mishra, A., Godara, R., Bali, S., Twinkle,, Kumar, A., Kumar, R., Kumar, N., Kumar, P., Acharya, V., Dogra, V.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.677533

Category: Plant Biology

Model Organism: Camellia sinensis

AI Summary

The study discovers that drought stress triggers proteolytic activation of chloroplast‑localized polyphenol oxidase (PPO) in Camellia sinensis, converting catechins into theaflavins that act as signaling molecules to induce an unfolded protein response and IRE1‑bZIP60‑dependent programmed cell death. Germplasm comparison, transcriptomic profiling, virus‑induced silencing, PPO overexpression, and pharmacological feeding experiments demonstrate that this PPO‑theaflavin pathway is a conserved stress sensor across species such as tomato and wheat.

polyphenol oxidase theaflavins unfolded protein response programmed cell death drought stress

Single-cell-level response to drought in Sorghum bicolor reveals novel targets for improving water use efficiency

Authors: Stata, M., Greenblum, S., Yoshinaga, Y., Koriabine, M., Keymanesh, K., Karia, P., Zhao, C., O'Malley, R. C., Rhee, S. Y.

Date: 2025-08-28 · Version: 1
DOI: 10.1101/2025.08.28.671794

Category: Plant Biology

Model Organism: Sorghum bicolor

AI Summary

The study applied single-nucleus RNA sequencing to mature Sorghum bicolor leaves under well‑watered and drought conditions, identifying major leaf cell types and their transcriptional responses. Drought induced transcriptomic changes that surpassed cell‑type differences, indicating a common response across mesophyll, bundle sheath, epidermal, vascular, and stomatal cells, and enabling the identification of candidate drought‑responsive regulators for improving water‑use efficiency.

drought stress Sorghum bicolor single-nucleus RNA sequencing cell-type specific transcription bioenergy crop

Drought drives reversible disengagement of root-mycorrhizal symbiosis

Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.

Date: 2025-08-27 · Version: 1
DOI: 10.1101/2025.08.25.671999

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.

drought stress arbuscular mycorrhizal symbiosis Oryza sativa nutrient acquisition regulation re-watering recovery
Previous Page 2 of 5 Next