Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 27 Papers

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

The Arabidopsis GyraseB3 contributes to transposon silencing by promoting histone deacetylation

Authors: Gy, I., Beaubiat, S., Bouche, N.

Date: 2025-08-13 · Version: 1
DOI: 10.1101/2025.08.11.669681

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies GyrB3 as a novel nuclear factor that interacts with histone deacetylases to regulate transposable element silencing in plants, acting as a suppressor of IBM1 deficiency–induced epigenetic defects. Loss of GyrB3 reduces DNA methylation and increases H3 acetylation at TEs, demonstrating the importance of histone deacetylation for genome stability.

DNA methylation histone demethylase IBM1 GyrB3 transposable element silencing histone deacetylase HDA6

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts

Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming

Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.

Date: 2025-07-09 · Version: 1
DOI: 10.1101/2025.07.08.663752

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.

Enterobacter sp. SA187 elevated CO2 Arabidopsis thaliana phytohormone signaling transcriptomics

Secretory carrier membrane proteins assist with aquaporin trafficking in Arabidopsis.

Authors: Jiang, Q., Vandorpe, M., fox, a. R., Vermeersch, M., Mylle, E., Cuadrado, A. F., Kraus, J., Liu, H., Eeckhout, D., Navarre, C., Courtoy, A., Jacobs, T. B., Dragwidge, J. M., De Smet, I., Pleskot, R., Chaumont, F., Van Damme, D.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.662988

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated the five Arabidopsis SCAMP proteins, focusing on SCAMP5, and identified conserved tyrosine and NPF motifs that mediate anterograde transport and endocytosis, respectively. SCAMPs were shown to dimerize at the plasma membrane and endosomes, interact with plasma‑membrane aquaporins, and their loss (triple and quintuple mutants) conferred mild developmental delay but increased drought tolerance, likely via altered PIP trafficking or stability.

SCAMP proteins Arabidopsis thaliana aquaporins (PIPs) drought tolerance protein trafficking

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Drought stress modulates the molecular response of Arabidopsis plants to root-knot nematode infection

Authors: Refaiy, A., Lilley, C. J., Atkinson, N. J., Urwin, P. E.

Date: 2025-06-09 · Version: 1
DOI: 10.1101/2025.06.05.658137

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

RNA‑Seq was used to compare Arabidopsis thaliana transcriptomes under drought, Meloidogyne incognita infection, and their combination, revealing a distinct set of genes uniquely regulated by the joint stress. Notably, AZI1, SAUR71, and DRN1 showed stress‑specific expression patterns, suggesting key roles in coordinating responses to simultaneous drought and nematode attack.

combined biotic and abiotic stress drought stress root‑knot nematode (Meloidogyne incognita) RNA‑Seq transcriptomics Arabidopsis thaliana

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture
Previous Page 2 of 3 Next