Latest 28 Papers

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Dynamic ASK1 proximity networks uncover SCF-dependent and noncanonical roles in ABA and drought adaptation

Authors: Rodriguez-Zaccaro, F. D., Moe-Lange, J., Malik, S., Montes-Serey, C., Hamada, N., Groover, A., Walley, J., Shabek, N.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.22.696057

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study maps the in vivo proximity interactome of Arabidopsis SKP1-LIKE 1 (ASK1) under acute abscisic acid (ABA) signaling and prolonged drought using TurboID-based proximity labeling and quantitative proteomics, revealing condition-specific networks that include both canonical SCF modules and diverse noncanonical partners. Overexpression of ASK1 shifts proteome composition toward drought‑protective and ABA‑responsive proteins while repressing immune and ROS‑scavenging pathways, highlighting ASK1 as a hub that integrates SCF‑dependent and independent pathways to reprogram transcription, translation, and proteostasis during stress adaptation.

ASK1 SCF ubiquitin ligases abscisic acid signaling drought stress TurboID proximity labeling

GWAs reveals SUBER GENE1-mediated suberization via Type One Phosphatases

Authors: Han, J.-P., Lefebvre-Legendre, L., Yu, J., Capitao, M. B., Beaulieu, C., Gully, K., Shukla, V., Wu, Y., Boland, A., Nawrath, C., Barberon, M.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.05.06.652434

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.

suberin deposition Arabidopsis thaliana GWAS SBG1 TOPP phosphatases

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Development alters genotype-environment interactions and shapes adaptation in Arabidopsis

Authors: Lawrence-Paul, E. H., Janakiraman, J., Lawrence-Paul, M. R., Ben-Zeev, R., Xu, Y., Penn, A., Lasky, J. R.

Date: 2025-11-03 · Version: 2
DOI: 10.1101/2025.05.13.653704

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.

vegetative phase change drought adaptation genotype-by-environment interaction GWAS developmental trade‑offs

The O-glycosyltransferase SECRET AGENT Participates in Abscisic Acid-Induced Microtubule Remodeling and Stomatal Closure in Arabidopsis thaliana

Authors: Sun, P., Wu, Y., Wang, P., Hu, M., Wang, Z., Yu, R., Li, J.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.29.683829

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the Arabidopsis O-GlcNAc transferase SEC is essential for timely ABA‑induced stomatal closure and drought tolerance, with sec-5 mutants showing delayed closure and increased water loss, while SEC overexpression enhances responsiveness. SEC influences guard‑cell microtubule remodeling, as loss of SEC impairs microtubule reorganization and SEC directly interacts with tubulin α‑4, suggesting tubulin as a target of O‑GlcNAcylation.

O-GlcNAc transferase ABA-induced stomatal closure microtubule dynamics drought tolerance Arabidopsis thaliana

Clathrin-coated vesicles are targeted for selective autophagy during osmotic stress.

Authors: dragwidge, j., Buridan, M., Kraus, J., Kosuth, T., Chambaud, C., Brocard, L., Yperman, K., Mylle, E., Vandorpe, M., Eeckhout, D., De Jaeger, G., Pleskot, R., Bernard, A., Van Damme, D.

Date: 2025-09-17 · Version: 1
DOI: 10.1101/2025.09.16.676479

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies an autophagy pathway that degrades plasma membrane-derived clathrin-coated vesicles (CCVs) during hyperosmotic stress, helping maintain membrane tension as cell volume decreases. Using live imaging and correlative microscopy, the authors show that the TPLATE complex subunits AtEH1/Pan1 and AtEH2/Pan1 act as selective autophagy receptors by directly binding ATG8, thereby removing excess membrane under drought or salt conditions.

hyperosmotic stress autophagy clathrin-coated vesicles TPLATE complex plasma membrane tension

Deciphering the role of autophagy under Cd toxicity in Arabidopsis thaliana

Authors: Collado-Arenal, A. M., Perez-Gordillo, F. L., Espinosa, J., Moreno-Diaz, R., Shabala, S., Romero-Puertas, M. C., Sandalio, L. M.

Date: 2025-08-31 · Version: 1
DOI: 10.1101/2025.08.27.672299

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates autophagy’s protective role against cadmium stress in Arabidopsis thaliana by comparing wild-type, atg5 and atg7 autophagy-deficient mutants, and ATG5/ATG7 overexpression lines. Cadmium exposure triggered autophagy, shown by ATG8a-PE accumulation, GFP-ATG8a fluorescence and ATG gene up-regulation, with atg5 mutants displaying heightened Cd sensitivity and disrupted metal ion homeostasis, whereas overexpression had limited impact. Genotype-specific differences between Col-0 and Ws backgrounds were also observed.

cadmium stress autophagy Arabidopsis thaliana ATG5 metal ion homeostasis

Unveiling the molecular identity of plant autophagic compartments: A proteo-lipidomic study in Arabidopsis thaliana

Authors: Lupette, J., Chambaud, C., Buridan, M., Castets, J., Wattelet-Boyer, V., Toboso Moreno, I., Kosuth, T., Yatim, C., Dittrich-Domergue, F., Gros, V., Jouhet, J., Claverol, S., Herice, C., Melser, S., Genva, M., Fouillen, L., Bessoule, J.-J., Domergue, F., Bernard, A.

Date: 2025-08-28 · Version: 1
DOI: 10.1101/2025.08.25.671700

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.

autophagy phagophore membrane proteomics lipidomics membrane remodeling
Page 1 of 3 Next