Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 4 Papers

Heat Stress and Soil Microbial Disturbance Influence Soybean Root Metabolite, Microbiome Profiles, and Nodulation

Authors: Elango, D., Van der Laan, L., Gholizadeh, S., Premarathne, M. D. G. P., Dutter, C. R., DePew, C., McDaniel, M., Singh, A. K.

Date: 2025-07-14 · Version: 1
DOI: 10.1101/2025.07.13.664636

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study investigated how native soil microbes affect heat tolerance in soybean (Glycine max) by comparing plants grown in natural versus microbiome‑disturbed soils under optimal and elevated temperatures. Using 16S rRNA and ITS sequencing alongside non‑targeted root metabolomics, the authors found significant shifts in bacterial and fungal communities, suppressed nodule‑forming bacteria, and altered root metabolites that correlated with reduced nodulation efficiency under heat stress. Integrated multi‑omics analyses linked microbial composition to metabolite profiles and nitrogen‑fixation traits, highlighting a coordinated response of the root physiological system to combined heat and microbiome perturbations.

heat stress rhizosphere microbiome soybean root metabolomics nitrogen fixation

Integrative Multi-Omics Analysis Reveals Stress-Specific Molecular Architectures in Soybean under Drought and Rust Infection

Authors: Husein, G., Castro-Moretti, F. R., Prado, M., Amorim, L., Mazzafera, P., Canales, J., Monteiro-Vitorello, C. B.

Date: 2025-07-08 · Version: 1
DOI: 10.1101/2025.07.07.663534

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.

Asian soybean rust drought stress transcriptomics metabolomics co-expression network

Transcriptomic and physiological responses of soybean plants subjected to a combination of water deficit and heat stress under field conditions

Authors: Sinha, R., Pelaez-Vico, M. A., Dhakal, S., Ghani, A., Myers, R., Verma, M., Shostak, B., Ogden, A., Krueger, C. B., Costa Netto, J. R., Zandalinas, S. I., Joshi, T., Fritschi, F. B., Mittler, R.

Date: 2025-05-11 · Version: 1
DOI: 10.1101/2025.05.07.652738

Category: Plant Biology

Model Organism: Glycine max

AI Summary

A two‑year field study examined how soybean (Glycine max) vegetative and reproductive tissues respond transcriptionally and physiologically to water deficit, heat, and their combination. The field‑grown plants showed distinct transcriptomic patterns compared with controlled‑environment studies, especially under single stresses, while differential leaf‑pod transpiration observed in growth chambers was also present in the field. The generated transcriptomic dataset highlights the importance of field‑based omics for understanding crop stress responses.

water deficit heat stress combined stress field transcriptomics soybean

Iron retention coupled with trade-offs in localized symbiotic effects confers tolerance to combined iron deficiency and drought in soybean

Authors: Hasan, M. R., Thapa, A., Kabir, A. H.

Date: 2025-03-24 · Version: 2
DOI: 10.1101/2025.01.02.631154

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study compares iron deficiency and drought tolerance between two soybean genotypes, Clark (tolerant) and Arisoy (sensitive), using multi‑omics analyses. Clark maintains iron homeostasis, higher antioxidant protein expression, and recruits beneficial root microbes (Variovorax, Paecilomyces) that support nutrient uptake and nodule function, while Arisoy shows impaired physiological and microbial responses. The findings identify host‑microbe interactions and specific molecular pathways as potential targets for breeding and microbiome‑based biofertilizers.

soybean (Glycine max) iron deficiency drought stress root microbiome multi‑omics