Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 128 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

A drought stress-induced MYB transcription factor regulates pavement cell shape in leaves of European aspen (Populus tremula)

Authors: Liu, S., Doyle, S. M., Robinson, K. M., Rahneshan, Z., Street, N. R., Robert, S.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699252

Category: Plant Biology

Model Organism: Populus tremula

AI Summary

The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.

leaf pavement cells Populus tremula MYB305a GWAS drought stress

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

Wheat diversity reveals new genomic loci and candidate genes for vegetation indices using genome-wide association analysis

Authors: Rustamova, S., Jahangirov, A., Leon, J., Naz, A. A., Huseynova, I.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699455

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.

Triticum aestivum drought stress spectral vegetation indices GWAS QTL hotspot

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Physiological Characterization under the Influence of Drought Stress and Salicylic Acid in Valeriana wallichii DC

Authors: Ansari, S., Patni, B., Jangpangi, D., Joshi, H. C., Bhatt, M. K., Purohit, V.

Date: 2026-01-09 · Version: 1
DOI: 10.64898/2026.01.09.698547

Category: Plant Biology

Model Organism: Valeriana wallichii

AI Summary

The study investigated the ability of foliar-applied salicylic acid (SA) to alleviate drought stress in the high‑altitude medicinal plant Valeriana wallichii by measuring physiological and biochemical responses during vegetative and flowering stages. SA at specific concentrations improved photosynthetic rates, water‑use efficiency, chlorophyll content, membrane stability, and root biomass under both severe (25% field capacity) and moderate (50% field capacity) drought conditions. These results suggest that SA treatment enhances drought tolerance and productivity in this species.

drought stress salicylic acid Valeriana wallichii photosynthetic efficiency water use efficiency

Features affecting Cas9-Induced Editing Efficiency and Patterns in Tomato: Evidence from a Large CRISPR Dataset

Authors: Cucuy, A., Ben-Tov, D., Melamed-Bessudo, C., Honig, A., Cohen, B. A., Levy, A. A.

Date: 2026-01-07 · Version: 1
DOI: 10.64898/2026.01.06.696182

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.

CRISPR/Cas9 ATAC-seq chromatin accessibility microhomology‑mediated end joining tomato

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization
Page 1 of 13 Next