Drought drives reversible disengagement of root-mycorrhizal symbiosis
Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.
The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The study investigated structural cell wall changes in wheat (Triticum aestivum) seedlings during drought, revealing rapid remodeling after five days, organ-specific responses, and both cross‑linking and degradation of wall polymers such as homogalacturonans, xylan, and AGPs. Deposition of unesterified homogalacturonans promotes calcium cross‑linking, enhancing wall rigidity and water retention.
Stress-dependent responses of grapevine wood and fungal pathogen activity under esca and drought
Authors: Chambard, M., Cantu, D., Bortolami, G., Dell'Acqua, N., Ferrer, N., Gambetta, G., Garcia, J., Gastou, P., Massonnet, M., Moretti, S., Rochepeau, A., Petriacq, P., Foulongne-Oriol, M., Delmas, C. E. L.
The study used wood metatranscriptomics, metabolomics, and metabarcoding to compare grapevine (Vitis vinifera) responses to drought and esca leaf symptom expression, revealing distinct but overlapping transcriptomic and metabolic signatures, including activation of phenylpropanoid and stilbenoid pathways. Drought reduced esca symptom expression, associated with decreased abundance of the wood‑decay fungus Fomitiporia mediterranea and altered fungal virulence factor expression, while increasing the relative abundance and anti‑oxidative gene expression of Phaeomoniella chlamydospora.
The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.
Salt stress strongly suppresses root growth in Festuca rubra while sparing shoot development. Transcriptome profiling identified over 68,000 differentially expressed genes, with up‑regulated genes enriched in methionine, melatonin, and suberin biosynthesis and down‑regulated genes involved in gibberellin, ABA, and sugar signaling, indicating extensive hormonal and metabolic reprogramming. Paradoxical regulation of gibberellin and ethylene pathways suggests a finely tuned balance between growth and stress responses.
The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
The study reveals a binary VOC chemotype in cultivated upland cotton, where genotypes exclusively produce either bisabolene or guaiene sesquiterpenes, and links these chemotypes to differential drought responses. Drought stress altered water loss, total terpene levels, and green leaf volatile biosynthesis in a chemotype-specific manner, highlighting chemotypic profiles as potential non‑destructive biomarkers for breeding drought‑resilient cotton.
The study compared leaf‑level physiological responses to a severe summer drought in two Pinus radiata stands differing in management history and age, revealing that younger, managed trees depend on soil nutrients for photosynthetic performance, whereas older, abandoned trees maintain function despite nutrient scarcity. These findings suggest that mature, abandoned stands possess age‑related traits and higher soil organic carbon that buffer drought and nutrient stress, highlighting the value of integrating soil‑leaf interactions into forest management.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.