Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 7 Papers

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme

A plant-centric investigation of Class B Flavin-dependent Monooxygenase evolution and structural diversity

Authors: Christensen, J. M., Neilson, E. H.

Date: 2025-09-16 · Version: 1
DOI: 10.1101/2025.09.16.676513

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.

Class B flavin-dependent monooxygenases phylogenetic analysis Viridiplantae domain architecture motif analysis

Exploring phenotypic and genetic variation in Lactuca with GWAS in L. sativa and L. serriola

Authors: Mehrem, S. L., Van den Ackerveken, G., Snoek, B. L.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.27.661939

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study generated a phenotypic dataset for 550 Lactuca accessions, including 20 wild relatives, and applied an iterative two‑step GWAS using a jointly processed SNP set for cultivated lettuce (L. sativa) and its wild progenitor (L. serriola) to dissect trait loci. Known and novel QTLs for anthocyanin accumulation, leaf morphology, and pathogen resistance were identified, with several L. serriola‑specific QTLs revealing unique genetic architectures, underscoring the breeding value of wild lettuce species.

Lactuca wild relatives anthocyanin accumulation leaf morphology pathogen resistance GWAS

The auxin gatekeepers: Evolution and diversification of the YUCCA family

Authors: Vijayanathan, M., Faryad, A., Abeywickrama, T. D., Christensen, J. M., Neilson, E. H.

Date: 2025-04-14 · Version: 1
DOI: 10.1101/2025.04.11.648386

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.

YUCCA gene family indole-3-acetic acid phylogenetic analysis gene family diversification auxin biosynthesis

A drought stress-responsive metabolite malate modulates stomatal responses through G-protein-dependent pathway in grapevine and Arabidopsis

Authors: Mimata, Y., Gong, R., Pei, X., Qin, G., Ye, W.

Date: 2025-02-27 · Version: 2
DOI: 10.1101/2024.04.02.587830

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study examined how tricarboxylic acid (TCA) cycle metabolites influence drought tolerance in grapevine and Arabidopsis, finding that malate uniquely triggers stomatal closure via elevations in cytosolic Ca2+ and activation of the SLAC1 anion channel. G-proteins were shown to be essential for malate‑mediated signaling, linking metabolic changes to drought response through a second‑messenger cascade.

drought stress TCA cycle metabolites malate signaling guard cells G‑protein

TAC-C uncovers open chromatin interaction in crops and SPL-mediated photosynthesis regulation

Authors: Kang, J., Zhang, Z., Lin, X., Liu, F., Song, Y., Zhao, P., Lin, Y., Luo, X., Li, X., Li, Y., Wang, W., Liu, C., Xu, S., Liu, X., Xiao, J.

Date: 2025-02-10 · Version: 1
DOI: 10.1101/2025.02.10.637364

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.

cis-regulatory elements chromatin loops TAC-C photosynthesis regulation wheat