Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 12 Papers

CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds

Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.

Date: 2025-11-28 · Version: 1
DOI: 10.1101/2025.11.25.690394

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.

CLPC2 microbial volatile compounds chloroplast CLP protease proteomics Arabidopsis thaliana

The O-glycosyltransferase SECRET AGENT Participates in Abscisic Acid-Induced Microtubule Remodeling and Stomatal Closure in Arabidopsis thaliana

Authors: Sun, P., Wu, Y., Wang, P., Hu, M., Wang, Z., Yu, R., Li, J.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.29.683829

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the Arabidopsis O-GlcNAc transferase SEC is essential for timely ABA‑induced stomatal closure and drought tolerance, with sec-5 mutants showing delayed closure and increased water loss, while SEC overexpression enhances responsiveness. SEC influences guard‑cell microtubule remodeling, as loss of SEC impairs microtubule reorganization and SEC directly interacts with tubulin α‑4, suggesting tubulin as a target of O‑GlcNAcylation.

O-GlcNAc transferase ABA-induced stomatal closure microtubule dynamics drought tolerance Arabidopsis thaliana

Cis-regulatory architecture downstream of FLOWERING LOCUS T underlies quantitative control of flowering

Authors: Zhou, H.-R., Doan, D. T. H., Hartwig, T., Turck, F.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678055

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.

FLOWERING LOCUS T enhancer architecture cis‑regulatory logic CRISPR/Cas9 chromatin accessibility

Unveiling the molecular identity of plant autophagic compartments: A proteo-lipidomic study in Arabidopsis thaliana

Authors: Lupette, J., Chambaud, C., Buridan, M., Castets, J., Wattelet-Boyer, V., Toboso Moreno, I., Kosuth, T., Yatim, C., Dittrich-Domergue, F., Gros, V., Jouhet, J., Claverol, S., Herice, C., Melser, S., Genva, M., Fouillen, L., Bessoule, J.-J., Domergue, F., Bernard, A.

Date: 2025-08-28 · Version: 1
DOI: 10.1101/2025.08.25.671700

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.

autophagy phagophore membrane proteomics lipidomics membrane remodeling

Large-Scale Multigenome-Wide Study Predicts the Existence of Transmembrane Phosphotransfer Proteins in Plant MSP Signaling Pathway

Authors: Lomin, S. N., Brenner, W. G., Savelieva, E. M., Arkhipov, D. V., Romanov, G. A.

Date: 2025-07-31 · Version: 1
DOI: 10.1101/2025.07.28.667123

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.

transmembrane HPt proteins multistep phosphorelay phylogenetic analysis molecular modeling plant signaling

Secretory carrier membrane proteins assist with aquaporin trafficking in Arabidopsis.

Authors: Jiang, Q., Vandorpe, M., fox, a. R., Vermeersch, M., Mylle, E., Cuadrado, A. F., Kraus, J., Liu, H., Eeckhout, D., Navarre, C., Courtoy, A., Jacobs, T. B., Dragwidge, J. M., De Smet, I., Pleskot, R., Chaumont, F., Van Damme, D.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.662988

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated the five Arabidopsis SCAMP proteins, focusing on SCAMP5, and identified conserved tyrosine and NPF motifs that mediate anterograde transport and endocytosis, respectively. SCAMPs were shown to dimerize at the plasma membrane and endosomes, interact with plasma‑membrane aquaporins, and their loss (triple and quintuple mutants) conferred mild developmental delay but increased drought tolerance, likely via altered PIP trafficking or stability.

SCAMP proteins Arabidopsis thaliana aquaporins (PIPs) drought tolerance protein trafficking

Evolutionary origin and functional diversification of plant GBF1-type ARF guanine-nucleotide exchange factors

Authors: Singh, M. K., Lauster, T., Huhn, K., Richter, S., Kientz, M., Neher, R. A., Juergens, G.

Date: 2025-06-06 · Version: 1
DOI: 10.1101/2025.06.03.657657

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.

GBF1-type ARF‑GEF phylogenetic analysis ortho‑synteny polar recycling yeast two‑hybrid

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

SNRK3.15 is a crucial component of the sulfur deprivation response in Arabidopsis thaliana

Authors: Apodiakou, A., Heyneke, E., Alseekh, S., Pinsorn, P., Metzger, S., Kopriva, S., Schulze, W., Hoefgen, R., Whitcomb, S. J.

Date: 2025-05-03 · Version: 1
DOI: 10.1101/2025.04.29.651231

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.

sulfate deprivation CIPK14/SNRK3.15 Arabidopsis thaliana kinase signaling proteomics

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture
Page 1 of 2 Next