Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 18 Papers

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts

Secretory carrier membrane proteins assist with aquaporin trafficking in Arabidopsis.

Authors: Jiang, Q., Vandorpe, M., fox, a. R., Vermeersch, M., Mylle, E., Cuadrado, A. F., Kraus, J., Liu, H., Eeckhout, D., Navarre, C., Courtoy, A., Jacobs, T. B., Dragwidge, J. M., De Smet, I., Pleskot, R., Chaumont, F., Van Damme, D.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.662988

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated the five Arabidopsis SCAMP proteins, focusing on SCAMP5, and identified conserved tyrosine and NPF motifs that mediate anterograde transport and endocytosis, respectively. SCAMPs were shown to dimerize at the plasma membrane and endosomes, interact with plasma‑membrane aquaporins, and their loss (triple and quintuple mutants) conferred mild developmental delay but increased drought tolerance, likely via altered PIP trafficking or stability.

SCAMP proteins Arabidopsis thaliana aquaporins (PIPs) drought tolerance protein trafficking

Drought stress modulates the molecular response of Arabidopsis plants to root-knot nematode infection

Authors: Refaiy, A., Lilley, C. J., Atkinson, N. J., Urwin, P. E.

Date: 2025-06-09 · Version: 1
DOI: 10.1101/2025.06.05.658137

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

RNA‑Seq was used to compare Arabidopsis thaliana transcriptomes under drought, Meloidogyne incognita infection, and their combination, revealing a distinct set of genes uniquely regulated by the joint stress. Notably, AZI1, SAUR71, and DRN1 showed stress‑specific expression patterns, suggesting key roles in coordinating responses to simultaneous drought and nematode attack.

combined biotic and abiotic stress drought stress root‑knot nematode (Meloidogyne incognita) RNA‑Seq transcriptomics Arabidopsis thaliana

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture

Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana

Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.

Date: 2025-03-31 · Version: 2
DOI: 10.1101/2025.01.08.631880

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.

Arabidopsis thaliana codon usage gene expression DNA methylation ribosome profiling

Stress drives plasticity in leaf maturation transcriptional dynamics

Authors: Swift, J., Wu, X., Xu, J., Jain, T., Illouz-Eliaz, N., Nery, J. R., Chory, J., Ecker, J. R.

Date: 2025-02-25 · Version: 1
DOI: 10.1101/2025.02.24.639183

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.

leaf development drought stress single-nucleus transcriptomics Arabidopsis thaliana cell-type specific gene upregulation

Transcription factors instruct DNA methylation patterns in plant reproductive tissues

Authors: Xu, G., Chen, Y., Wang, F., Li, E., Law, J.

Date: 2025-02-23 · Version: 1
DOI: 10.1101/2025.02.21.639562

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that a set of REPRODUCTIVE MERISTEM (REM) transcription factors, termed RIMs, are essential for directing RNA‑directed DNA methylation (RdDM) to CLSY3 targets in a sex‑specific manner in Arabidopsis reproductive tissues. Disruption of RIM DNA‑binding domains or their target motifs abolishes RdDM at these loci, demonstrating that genetic cues can guide de novo methylation patterns.

DNA methylation RNA‑directed DNA methylation (RdDM) REPRODUCTIVE MERISTEM transcription factors sex‑specific epigenetic regulation Arabidopsis thaliana

Arabidopsis REM transcription factors and GDE1 shape the DNA methylation landscape through the recruitment of RNA Polymerase IV transcription complexes.

Authors: Wu, Z., Xue, Y., Wang, S., Shih, Y.-H., Zhong, Z., Feng, S., Draper, J., Lu, A., Sha, J., Li, L., Wohlschlegel, J., Wu, K., Jacobsen, S. E.

Date: 2025-02-23 · Version: 1
DOI: 10.1101/2025.02.21.639493

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies four Arabidopsis REM transcription factors (VDD, VAL, REM12, REM13) that bind specific DNA sequences and, together with GDE1, recruit RNA polymerase IV to produce 24‑nt siRNAs that direct DNA methylation at designated loci. Loss of GDE1 causes Pol IV complexes to relocalize to sites bound by REM8, indicating that REM proteins provide sequence‑specific cues for epigenetic patterning.

DNA methylation 24‑nt siRNA REM transcription factors RNA polymerase IV Arabidopsis
Previous Page 2 of 2