A genome-wide survey identified 217 EXO70 genes across five kiwifruit (Actinidia spp.) species, classifying them into three subfamilies and nine clades and revealing lineage‑specific expansions, especially in EXO70C, EXO70E, and EXO70H. Functional assays demonstrated that kiwifruit EXO70B1 interacts with the immune hub protein RIN4_1, suggesting a conserved EXO70‑RIN4 module in plant immunity. The study provides a foundational resource for exploring EXO70‑mediated disease resistance in kiwifruit.
Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The authors generated a high‑resolution 1.45‑billion‑contact Micro‑C map for cultivated tomato (Solanum lycopersicum), identifying ~4,600 long‑range chromatin loops that fall into promoter‑centered and Polycomb/heterochromatin‑associated classes. Comparative Micro‑C in wild tomatoes showed conserved loop anchors despite sequence turnover, and integration with transcriptomics revealed that promoter‑anchored loops can either activate or repress gene expression depending on the chromatin state of distal anchors.
The study compared physiological and transcriptomic responses of poplar trees colonized by the ectomycorrhizal fungi Paxillus involutus or Cenococcum geophilum under normal, drought, and recovery conditions. Cenococcum-colonized plants showed constitutive up‑regulation of heat‑shock proteins, galactinol synthase, and aquaporins and maintained water status and photosynthesis during severe drought, whereas Paxillus colonization promoted growth and nitrogen‑use efficiency and enabled rapid recovery through drought‑induced leaf shedding. These contrasting strategies illustrate species‑specific positions on the growth‑defense trade‑off in ectomycorrhizal symbiosis.
The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.
The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.
The study used host-mediated artificial selection to iteratively enrich rice-associated microbiomes that improve growth and drought tolerance, starting from diverse soil microbial communities. Over multiple generations, selected microbiomes converged, and amplicon sequencing along with metagenome-assembled genomes identified specific bacterial taxa and functional pathways (e.g., glycerol-3-phosphate and iron transport) linked to enhanced drought performance. The results demonstrate the effectiveness of plant phenotype-driven microbiome engineering for crop improvement.
Comparative gene regulatory network mapping of Brassicaceae members with differential drought tolerance
Authors: Pandiarajan, R., Lin, C.-W., Sauer, M., Rothballer, S. T., Marin-de la Rosa, N., Schwehn, P., Papadopoulou, E., Mairhormann, B., Falter-Braun, P.
The study mapped drought‑responsive gene regulatory networks in Arabidopsis thaliana, its tolerant relative Arabidopsis lyrata, and Eutrema salsugineum using yeast one‑hybrid screens of orthologous promoters, revealing higher network connectivity and specific TF‑promoter interactions in the tolerant species. Notable findings include an Esa‑specific expansion of bZIP interactions, differential ABA‑signalling edges, and the identification of ASIL2 as a novel stress‑responsive factor, providing a comparative framework for improving crop drought tolerance.
NUDIX Hydrolases Target Specific Inositol Pyrophosphates and Regulate Phosphate Homeostasis and Bacterial Pathogen Susceptibility in Arabidopsis
Authors: Schneider, R., Lami, K., Prucker, I., Stolze, S. C., Strauss, A., Schmidt, J. M., Bartsch, S. M., Langenbach, K., Lange, E., Ritter, K., Furkert, D., Faiss, N., Kumar, S., Hasan, M. S., Makris, A., Krusenbaum, L., Wege, S., Belay, Y. Z., Kriescher, S., The, J., Harings, M., Grundler, F., Ried-Lasi, M. K., Schoof, H., Gaugler, P., Kamleitner, M., Fiedler, D., Nakagami, H., Giehl, R. F., Lahaye, T., Bhattacharjee, S., Jessen, H. J., Gaugler, V., Schaaf, G.
The study identified two subclades of Arabidopsis NUDIX hydrolases that selectively hydrolyze distinct inositol pyrophosphate isomers, with subclade I targeting 4-InsP7 and subclade II targeting 3-InsP7 in a Mg2+-dependent manner. Loss-of-function mutants of subclade II NUDTs displayed disrupted phosphate and iron homeostasis, elevated 1/3-InsP7 levels, and increased resistance to Pseudomonas syringae, revealing roles in nutrient signaling and plant immunity, while cross-kingdom analyses showed conserved PP-InsP‑metabolizing activities.
The study evaluated drought tolerance and yield stability of eleven Andean amaranth genotypes (A. caudatus and A. mantegazzianus) across four agroecological zones in Northwest Argentina under irrigated and drought‑stressed conditions. Using linear mixed models and AMMI analysis, significant genotype and genotype‑by‑environment effects were detected, identifying several breeding lines with high yield and stability as well as a highly stable but low‑yielding landrace. The results highlight both broad and specific adaptation among amaranth genotypes for drought‑prone environments.