Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 63 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Overexpression of PtaHDG11 enhances drought tolerance and suppresses trichome formation in Populus tremula x Populus alba

Authors: Fendel, A., Fladung, M., Bruegmann, T.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699028

Category: Plant Biology

Model Organism: Populus tremula × Populus alba

AI Summary

The study identified the poplar homolog of Arabidopsis HDG11 and generated transgenic poplar hybrids overexpressing PtaHDG11. Constitutive expression conferred markedly improved drought tolerance, as evidenced by higher leaf water content, reduced oxidative damage, up‑regulation of antioxidant genes, and greater post‑stress biomass, while also causing a glabrous phenotype. These results highlight PtaHDG11 as a promising target for breeding drought‑resilient trees.

HDG11 drought tolerance Populus hybrid antioxidant genes transgenic overexpression

Ultra large-scale 2D clinostats uncover environmentally derived variation in tomato responses to simulated microgravity

Authors: Hostetler, A. N., Kennebeck, E., Reneau, J. W., Birtell, E., Caldwell, D. L., Iyer-Pascuzzi, A. S., Sparks, E. E.

Date: 2026-01-13 · Version: 2
DOI: 10.1101/2025.05.16.654566

Category: Plant Biology

Model Organism: Solanum lycopersicum (tomato)

AI Summary

The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.

simulated microgravity ultra large-scale clinostat tomato (Solanum lycopersicum) heat stress plant growth interaction

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

The CCCH Zinc Finger Gene PgCCCH50 from Pearl Millet Confers Drought and Salt Tolerance through an ABA-Dependent PgAREB1-PgCCCH50 Module

Authors: xie, z., zhu, J., Yu, G., Ma, X., Zhou, Y., Yan, H., Huang, L.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.23.696222

Category: Plant Biology

Model Organism: Pennisetum glaucum

AI Summary

The authors performed a genome-wide analysis of 53 CCCH zinc‑finger genes in pearl millet, identified seven stress‑responsive members and demonstrated that overexpressing PgC3H50 in Arabidopsis enhances drought and salt tolerance. They showed that the ABA‑responsive transcription factor PgAREB1 directly binds the PgC3H50 promoter, activating its expression, as confirmed by yeast one‑hybrid, dual‑luciferase and EMSA assays, defining a new PgAREB1‑PgC3H50 regulatory module.

CCCH zinc finger proteins drought tolerance salinity stress ABA signaling Pearl millet

Alternative splicing of PIF4 regulates plant development under heat stress

Authors: Gonzalez, M. N., Alary, B., Szakonyi, D., Laloum, T., Duque, P., Martin, G.

Date: 2025-12-18 · Version: 1
DOI: 10.64898/2025.12.17.694898

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.

PIF4 alternative splicing heat stress photomorphogenesis post‑transcriptional regulation

QTL for Heat-Induced Stomatal Anatomy Underpin Gas Exchange Variation in Field-Grown Wheat

Authors: Chaplin, E. D., Tanaka, E., Merchant, A., Sznajder, B., Trethowan, R., Salter, W. T.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694723

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.

stomatal conductance heat stress wheat (Triticum aestivum) QTL mapping stomatal anatomy

A Critical Window of Maternal Temperature Effects on Weedy Rice Seed Dormancy

Authors: Auge, G., Nishikata, R., Imaizumi, T.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693925

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identified a critical two‑week window of elevated maternal temperature during weeks 4–5 after flowering that delays dormancy release in weedy rice seeds. Controlled‑environment and field transplant experiments showed that this late‑reproductive‑stage heat exposure postpones germination after after‑ripening, providing insight for predicting seed behavior and improving weed management strategies.

seed dormancy maternal temperature weedy rice heat stress reproductive stage sensitivity

Genetic Insights from Line x Tester Analysis of Maize Lethal Necrosis Testcrosses for Developing Multi-Stress-Resilient Hybrids in Sub-Saharan Africa

Authors: Gowda, M., Beyene, Y., L.M., S., Ogugo, V., Amadu, M. K., Chaikam, V.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.07.692857

Category: Plant Biology

Model Organism: Zea mays

AI Summary

A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.

maize lethal necrosis (MLN) drought tolerance grain yield combining ability GGE biplot

The functional divergence of two ethylene receptor subfamilies that exhibit Ca2+-permeable channel activity

Authors: Pan, C., Cheng, J., Lin, Z., Hao, D., Xiao, Z., Ming, Y., Song, W., Liu, L., Guo, H.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691086

Category: Plant Biology

Model Organism: General

AI Summary

The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.

ethylene signaling subfamily I receptors Ca2+ influx epistasis hormone‑induced calcium channel
Page 1 of 7 Next