Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 4 Papers

QTL for Heat-Induced Stomatal Anatomy Underpin Gas Exchange Variation in Field-Grown Wheat

Authors: Chaplin, E. D., Tanaka, E., Merchant, A., Sznajder, B., Trethowan, R., Salter, W. T.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694723

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.

stomatal conductance heat stress wheat (Triticum aestivum) QTL mapping stomatal anatomy

The wheat VIH2-3B, a functional PPIP5K controls the localization of fasciclin-like arabinogalactan protein

Authors: Shukla, A., Gopal, R., Ghosh, R., Chaudhuri, A., Agrwal, K., Tanwar, R., Jessen, H., Laha, D., Pandey, A. K.

Date: 2025-07-22 · Version: 2
DOI: 10.1101/2024.09.24.614694

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used a yeast two-hybrid screen to identify 52 wheat proteins that interact with the inositol pyrophosphate kinase TaVIH2-3B, highlighting the fasciclin‑like arabinogalactan protein TaFLA7 as a key partner involved in cell‑wall functions. Pulldown assays and reporter fusion analyses confirmed the interaction and plasma‑membrane localization of TaFLA7, which is modulated by TaVIH2‑3B activity and shows drought‑responsive and grain‑development expression in wheat.

Inositol pyrophosphate kinase TaVIH2-3B TaFLA7 cell wall remodeling drought tolerance

Priming of retrograde signaling in wheat across multiple natural environments reveal how responses to dynamic stimuli can be integrated to alter yield, yield stability and water productivity

Authors: Bowerman, A. F., Moore, M., Yadav, A., Zhang, J., Mortimer, M. D., Plskova, Z., Tee, E. E., Au, E. K., Collinge, D. P., Estavillo, G. M., Howitt, C. A., Chan, K. X., Rebetzke, G. J., Pogson, B. J.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.10.642515

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study generated wheat (Triticum aestivum) mutants with targeted deletions in the SAL gene family (TaSAL1 and TaSAL2) to assess the impact of chloroplast-to-nucleus retrograde signaling on field performance. Across 15 diverse Australian field trials, TaSAL2 deletions conferred 4–8% higher yields and improved water productivity by maintaining photosynthetic efficiency and dynamic stomatal control under drought, whereas TaSAL1 deletions reduced yields. These results demonstrate that locus‑specific retrograde signaling modifications can simultaneously enhance yield and stress resilience in a major crop.

retrograde signaling SAL gene deletions wheat (Triticum aestivum) drought tolerance field trial validation

Plant plasticity in the face of climate change - CO2 offsetting effects to warming and water deficit in wheat. A review.

Authors: Gawinowski, M., Chenu, K., Deswarte, J.-C., Launay, M., Bancal, M.-O.

Date: 2025-02-12 · Version: 1
DOI: 10.1101/2025.02.10.637370

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.

elevated CO2 heat stress drought wheat plasticity indices