Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 21 Papers

Secretory carrier membrane proteins assist with aquaporin trafficking in Arabidopsis.

Authors: Jiang, Q., Vandorpe, M., fox, a. R., Vermeersch, M., Mylle, E., Cuadrado, A. F., Kraus, J., Liu, H., Eeckhout, D., Navarre, C., Courtoy, A., Jacobs, T. B., Dragwidge, J. M., De Smet, I., Pleskot, R., Chaumont, F., Van Damme, D.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.662988

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated the five Arabidopsis SCAMP proteins, focusing on SCAMP5, and identified conserved tyrosine and NPF motifs that mediate anterograde transport and endocytosis, respectively. SCAMPs were shown to dimerize at the plasma membrane and endosomes, interact with plasma‑membrane aquaporins, and their loss (triple and quintuple mutants) conferred mild developmental delay but increased drought tolerance, likely via altered PIP trafficking or stability.

SCAMP proteins Arabidopsis thaliana aquaporins (PIPs) drought tolerance protein trafficking

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Molecular Insights into the Production of Extracellular Vesicles by Plants

Authors: Koch, B. L., Gardner, D., Smith, H., Bracewell, R., Awdey, L., Foster, J., Borniego, M. L., Munch, D. H., Nielsen, M. E., Pasupuleti, R., Trinidad, J., Rutter, B., Thordal-Christensen, H., Innes, R. W.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.16.659989

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used proximity labeling, co‑immunoprecipitation, and fluorescence microscopy to dissect the protein components and pathways governing distinct extracellular vesicle (EV) subpopulations in Arabidopsis, identifying roles for EXO70 exocyst subunits, RIN4, and VAP27. Mutant analyses revealed that disruptions in exo70 family genes, rin4, rabA2a, scd1, and vap27 reduce EV secretion and increase susceptibility to the fungal pathogen Colletotrichum higginsianum, highlighting EV secretion as a key facet of plant immunity.

extracellular vesicles Arabidopsis thaliana EXO70 exocyst complex proximity labeling plant immunity

Diversification of the "EDVID" packing motif underpins structural and functional variation in plant NLR coiled-coil domains

Authors: Sulkowski, O., Ovodova, A., Leisse, A., Gögelein, K., Förderer, A.

Date: 2025-06-03 · Version: 1
DOI: 10.1101/2025.06.01.657260

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates the conserved EDVID motif in the coiled‑coil domain of plant CC‑NLR immune receptors, revealing its role as a predictor of canonical CC‑NLR function and oligomeric assembly. It identifies a preceding acidic “preEDVID” motif in certain Arabidopsis‑related CC‑NLRs and shows that loss of the EDVID motif defines a distinct NLR subgroup, while acidic residues in the helper NLR NRG1.1 are crucial for cell‑death activity.

CC-NLR EDVID motif plant immunity motif evolution structural diversity

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

G3BP1 Phosphorylation Regulates Plant Immunity in Arabidopsis

Authors: Hirt, H., Abdulhakim, F., Abdulfaraj, A., Rayapuram, N.

Date: 2025-05-08 · Version: 1
DOI: 10.1101/2025.05.06.652493

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the RNA‑binding protein AtG3BP1 as a phosphorylation target of MAPKs MPK3, MPK4, and MPK6 at Ser257 in Arabidopsis thaliana and shows that this modification promotes susceptibility to bacterial pathogens, suppresses ROS accumulation and salicylic acid biosynthesis, and maintains stomatal opening. Phospho‑mimic and phospho‑dead mutants reveal that phosphorylation stabilizes AtG3BP1 by preventing proteasomal degradation, highlighting a novel post‑translational control layer in plant immunity.

MAPK signaling AtG3BP1 phosphorylation plant immunity stomatal defense

Actin Depolymerization Factors (ADFs) Moonlighting: Nuclear Immune Regulation by Interacting with WRKY Transcription Factors and Shaping the Transcriptome

Authors: Li, P., Kelley, B., Li, Z., Procter, B., Corrion, A., Xie, X., Sheick, R., Lu, Y.-j., Nomoto, M., Wei, C.-i., Tada, Y., He, S.-Y., Xiao, S., Day, B.

Date: 2025-04-30 · Version: 1
DOI: 10.1101/2025.04.29.651294

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that Arabidopsis actin depolymerization factors (ADF2/3/4) have a nuclear moonlighting role, directly interacting with WRKY transcription factors to regulate immune‑related gene expression. Nuclear, rather than cytosolic, ADFs are essential for defense against both virulent and avirulent Pseudomonas syringae, highlighting a non‑canonical mechanism linking actin dynamics to transcriptional control in plant immunity.

actin depolymerization factors nuclear transcription regulation WRKY transcription factors plant immunity Arabidopsis thaliana

SnRK1.1 Coordinates Organ-Specific Growth-Defense Programs via Transcriptomic Rewiring in Arabidopsis thaliana

Authors: Kalachova, T., Muller, K., Lacek, J., Pree, S., Antonova, A., Bondarenko, O., Burketova, L., Retzer, K., Weckwerth, W.

Date: 2025-04-29 · Version: 1
DOI: 10.1101/2025.04.25.650715

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.

SnRK1 KIN10 transcriptome reprogramming plant immunity tissue-specific signaling

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture

Multilevel analysis of response to plant growth promoting and pathogenic bacteria in Arabidopsis roots and the role of CYP71A27 in this response

Authors: Koprivova, A., Ristova, D., Berka, M., Berkova, V., Türksoy, G. M., Andersen, T. G., Westhoff, P., Cerny, M., Kopriva, S.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.26.645393

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.

CYP71A27 plant‑microbe interaction Pseudomonas fluorescens CH267 Burkholderia glumeae PG1 transcriptomics
Previous Page 2 of 3 Next