Latest 5 Papers

Assessing Drought Resilience and Identification of High Yielding Upland Rice Varieties through Phenology, Growth and Yield Traits

Authors: Hussain, T., Anothai, J., Nualsri, C., Ali, A., Ali, M. F., Khomphet, T.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.20.695743

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

Sixteen upland rice varieties were evaluated under three irrigation regimes (100%, 70%, and 50% field capacity) with additional six‑day water withholding to simulate moderate and severe drought. Yield losses ranged from 35% to 78% depending on stress level, and varieties Dawk Kha, Khao/Sai, and Dawk Pa‑yawm showed the greatest stability, suggesting they are promising for breeding drought‑resilient upland rice.

upland rice drought stress field capacity irrigation yield loss varietal stability

Improving rice drought tolerance through host-mediated microbiome selection

Authors: Styer, A., Pettinga, D., Caddell, D. F., Coleman-Derr, D.

Date: 2025-09-18 · Version: 2
DOI: 10.1101/2024.02.03.578672

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study used host-mediated artificial selection to iteratively enrich rice-associated microbiomes that improve growth and drought tolerance, starting from diverse soil microbial communities. Over multiple generations, selected microbiomes converged, and amplicon sequencing along with metagenome-assembled genomes identified specific bacterial taxa and functional pathways (e.g., glycerol-3-phosphate and iron transport) linked to enhanced drought performance. The results demonstrate the effectiveness of plant phenotype-driven microbiome engineering for crop improvement.

host-mediated selection drought tolerance microbiome engineering amplicon sequencing metagenome-assembled genomes

Drought drives reversible disengagement of root-mycorrhizal symbiosis

Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.

Date: 2025-08-27 · Version: 1
DOI: 10.1101/2025.08.25.671999

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.

drought stress arbuscular mycorrhizal symbiosis Oryza sativa nutrient acquisition regulation re-watering recovery

ERF transcription factor regulons underpin growth-defence trade-off under acute heat stress in rice seedlings

Authors: Nair, A. U., Vishwakarma, S., Guha, T., Kadumuri, R. V., Fritschi, F. B., Chavali, S., Allu, A. D.

Date: 2025-04-22 · Version: 1
DOI: 10.1101/2025.04.21.649784

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study evaluated how acute heat stress affects early-stage rice seedlings, identifying a critical temperature threshold that impairs growth. Transcriptomic profiling of shoots and roots revealed ethylene‑responsive factors (ERFs) as central regulators, with ethylene and jasmonic acid acting upstream, and pre‑treatment with these hormones mitigated heat damage. These findings highlight ERF‑hormone interaction networks as targets for improving rice heat resilience.

heat stress Oryza sativa seedling transcriptomics ethylene responsive factors phytohormone treatment

Omics-driven Identification of Candidate Genes and SNP markers in a Major QTL Controlling Early Heading in Rice

Authors: Rao, D., T, N. S., CG, G., Gaur, N., Jamaloddin, M., Maganti, S. M., Raman, M. S., Patel, H. K., Tiwari, S., Sonti, R. V.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.25.645207

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.

heading date rice (Oryza sativa) QTL-seq SNP markers transcriptomics